ﻻ يوجد ملخص باللغة العربية
The leverage effect-- the correlation between an assets return and its volatility-- has played a key role in forecasting and understanding volatility and risk. While it is a long standing consensus that leverage effects exist and improve forecasts, empirical evidence paradoxically do not show that most individual stocks exhibit this phenomena, mischaracterizing risk and therefore leading to poor predictive performance. We examine this paradox, with the goal to improve density forecasts, by relaxing the assumption of linearity in the leverage effect. Nonlinear generalizations of the leverage effect are proposed within the Bayesian stochastic volatility framework in order to capture flexible leverage structures, where small fluctuations in prices have a different effect from large shocks. Efficient Bayesian sequential computation is developed and implemented to estimate this effect in a practical, on-line manner. Examining 615 stocks that comprise the S&P500 and Nikkei 225, we find that relaxing the linear assumption to our proposed nonlinear leverage effect function improves predictive performances for 89% of all stocks compared to the conventional model assumption.
We build a simple model of leveraged asset purchases with margin calls. Investment funds use what is perhaps the most basic financial strategy, called value investing, i.e. systematically attempting to buy underpriced assets. When funds do not borrow
In this paper we develop a Bayesian procedure for estimating multivariate stochastic volatility (MSV) using state space models. A multiplicative model based on inverted Wishart and multivariate singular beta distributions is proposed for the evolutio
Volatility of financial stock is referring to the degree of uncertainty or risk embedded within a stocks dynamics. Such risk has been received huge amounts of attention from diverse financial researchers. By following the concept of regime-switching
This paper is concerned with the estimation of the volatility process in a stochastic volatility model of the following form: $dX_t=a_tdt+sigma_tdW_t$, where $X$ denotes the log-price and $sigma$ is a c`adl`ag semi-martingale. In the spirit of a seri
We study the price dynamics of 65 stocks from the Dow Jones Composite Average from 1973 until 2014. We show that it is possible to define a Daily Market Volatility $sigma(t)$ which is directly observable from data. This quantity is usually indirectly