ﻻ يوجد ملخص باللغة العربية
Regularity and irregularity of the Bergman projection on $L^p$ spaces is established on a natural family of bounded, pseudoconvex domains. The family is parameterized by a real variable $gamma$. A surprising consequence of the analysis is that, whenever $gamma$ is irrational, the Bergman projection is bounded only for $p=2$.
We obtain sharp ranges of $L^p$-boundedness for domains in a wide class of Reinhardt domains representable as sub-level sets of monomials, by expressing them as quotients of simpler domains. We prove a general transformation law relating $L^p$-bounde
A class of pseudoconvex domains in $mathbb{C}^{n}$ generalizing the Hartogs triangle is considered. The $L^p$ boundedness of the Bergman projection associated to these domains is established, for a restricted range of $p$ depending on the fatness of domains. This range of $p$ is shown to be sharp.
The author showed that a sequence in the unit disk is a zero sequence for the Bergman space $A^p$ if and only if a certain weighted space $L^p(W}$ contains a nontrivial analytic function. In this paper it is shown that the sequence is an interpolatin
Expected duality and approximation properties are shown to fail on Bergman spaces of domains in $mathbb{C}^n$, via examples. When the domain admits an operator satisfying certain mapping properties, positive duality and approximation results are prov
In this paper we study the compactness of operators on the Bergman space of the unit ball and on very generally weighted Bargmann-Fock spaces in terms of the behavior of their Berezin transforms and the norms of the operators acting on reproducing ke