Convection-driven spherical shell dynamos at varying Prandtl numbers


الملخص بالإنكليزية

(abidged) Context: Stellar convection zones are characterized by vigorous high-Reynolds number turbulence at low Prandtl numbers. Aims: We study the dynamo and differential rotation regimes at varying levels of viscous, thermal, and magnetic diffusion. Methods: We perform three-dimensional simulations of stratified fully compressible magnetohydrodynamic convection in rotating spherical wedges at various thermal and magnetic Prandtl numbers (from 0.25 to 2 and 5, respectively). Results: We find that the rotation profiles for high thermal diffusivity show a monotonically increasing angular velocity from the bottom of the convection zone to the top and from the poles toward the equator. For sufficiently rapid rotation, a region of negative radial shear develops at mid-latitudes as the thermal diffusivity is decreased. This coincides with a change in the dynamo mode from poleward propagating activity belts to equatorward propagating ones. Furthermore, the cyclic solutions disappear at the highest magnetic Reynolds numbers. The total magnetic energy increases with the magnetic Reynolds number in the range studied here ($5-151$), but the energies of the mean magnetic fields level off at high magnetic Reynolds numbers. The differential rotation is strongly affected by the magnetic fields and almost vanishes at the highest magnetic Reynolds numbers. In some of our most turbulent cases we find that two regimes are possible where either differential rotation is strong and mean magnetic fields relatively weak or vice versa. Conclusions: Our simulations indicate a strong non-linear feedback of magnetic fields on differential rotation, leading to qualitative changes in the behaviors of large-scale dynamos at high magnetic Reynolds numbers. Furthermore, we do not find indications of the simulations approaching an asymptotic regime where the results would be independent of diffusion coefficients.

تحميل البحث