ترغب بنشر مسار تعليمي؟ اضغط هنا

Interfacial magnetic anisotropy from a 3-dimensional Rashba substrate

70   0   0.0 ( 0 )
 نشر من قبل Paul Haney Mr.
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the magnetic anisotropy which arises at the interface between a thin film ferromagnet and a 3-d Rashba material. The 3-d Rashba material is characterized by the spin-orbit strength $alpha$ and the direction of broken bulk inversion symmetry $hat n$. We find an in-plane uniaxial anisotropy in the $hat{z}timeshat{n}$ direction, where $hat z$ is the interface normal. For realistic values of $alpha$, the uniaxial anisotropy is of a similar order of magnitude as the bulk magnetocrystalline anisotropy. Evaluating the uniaxial anisotropy for a simplified model in 1-d shows that for small band filling, the in-plane easy axis anisotropy scales as $alpha^4$ and results from a twisted exchange interaction between the spins in the 3-d Rashba material and the ferromagnet. For a ferroelectric 3-d Rashba material, $hat n$ can be controlled with an electric field, and we propose that the interfacial magnetic anisotropy could provide a mechanism for electrical control of the magnetic orientation.



قيم البحث

اقرأ أيضاً

We fabricated spin-polarized surface electronic states with tunable Fermi level from semiconductor to low-dimensional metal in the Bi/GaSb(110)-(2$times$1) surface using angle-resolved photoelectron spectroscopy (ARPES) and spin-resolved ARPES. The s pin-polarized surface band of Bi/GaSb(110) exhibits quasi-one-dimensional character with the Rashba parameter $alpha _{rm R}$ of 4.1 and 2.6 eVAA at the $bar{Gamma}$ and $bar{rm Y}$ points of the surface Brillouin zone, respectively. The Fermi level of the surface electronic state is tuned in situ by element-selective Ar-ion sputtering on the GaSb substrate. The giant Rashba-type spin splitting with switchable metallic/semiconducting character on semiconductor substrate makes this system a promising candidate for future researches in low-dimensional spintronic phenomena.
At interfaces with inversion symmetry breaking, Rashba effect couples the motion of electrons to their spin; as a result, spin-charge interconversion mechanism can occur. These interconversion mechanisms commonly exploit Rashba spin splitting at the Fermi level by spin pumping or spin torque ferromagnetic resonance. Here, we report evidence of significant photoinduced spin to charge conversion via Rashba spin splitting in an unoccupied state above the Fermi level at the Cu(111)/$alpha$-Bi$_{2}$O$_{3}$ interface. We predict an average Rashba coefficient of $1.72times 10^{-10}eV.m$ at 1.98 eV above the Fermi level, by fully relativistic first-principles analysis of the interfacial electronic structure with spin orbit interaction. We find agreement with our observation of helicity dependent photoinduced spin to charge conversion excited at 1.96 eV at room temperature, with spin current generation of $J_{s}=10^{6}A/m^{2}$. The present letter shows evidence of efficient spin-charge conversion exploiting Rashba spin splitting at excited states, harvesting light energy without magnetic materials or external magnetic fields.
Two-dimensional (2D) Rashba systems have been intensively studied in the last decade due to their unconventional physics, tunability capabilities, and potential for spin-charge interconversion when compared to conventional heavy metals. With the adve nt of a new generation of spin-based logic and memory devices, the search for Rashba systems with more robust and larger conversion efficiencies is expanding. Conventionally, demanding techniques such as angle- and spin-resolved photoemission spectroscopy are required to determine the Rashba parameter $alpha_{R}$ that characterizes these systems. Here, we introduce a simple method that allows a quantitative extraction of $alpha_{R}$, through the analysis of the bilinear response of angle-dependent magnetotransport experiments. This method is based on the modulation of the Rashba-split bands under a rotating in-plane magnetic field. We show that our method is able to correctly yield the value of $alpha_{R}$ for a wide range of Fermi energies in the 2D electron gas at the LaAlO$_{3}$/SrTiO$_{3}$ interface. By applying a gate voltage, we observe a maximum $alpha_{R}$ in the region of the band structure where interband effects maximize the Rashba effect, consistently with theoretical predictions.
In materials lacking inversion symmetry, the spin-orbit coupling enables the direct connection between the electrons spin and its linear momentum, a phenomenon called inverse spin galvanic effect. In magnetic materials, this effect promotes current-d riven torques that can be used to control the magnetization direction electrically. In this work, we investigate the current-driven inverse spin galvanic effect in a quantum well consisting in a magnetic material embedded between dissimilar insulators. Assuming the presence of Rashba spin-orbit coupling at the interfaces, we investigate the nature of the non-equilibrium spin density and the influence of the quantum well parameters. We find that the torque is governed by the interplay between the number of states participating to the transport and their spin chirality, the penetration of the wave function into the tunnel barriers, and the strength of the Rashba term.
The interplay between spin and heat currents at magnetic insulator|nonmagnetic metal interfaces has been a subject of much scrutiny because of both fundamental physics and the promise for technological applications. While ferrimagnetic and, more rece ntly, antiferromagnetic systems have been extensively investigated, a theory generalizing the heat-to-spin interconversion in noncollinear magnets is still lacking. Here, we establish a general framework for thermally-driven spin transport at the interface between a noncollinear magnet and a normal metal. Modeling the interfacial coupling between localized and itinerant magnetic moments via an exchange Hamiltonian, we derive an expression for the spin current, driven by a temperature difference, for an arbitrary noncollinear magnetic order. Our theory reproduces previously obtained results for ferromagnetic and antiferromagnet systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا