ﻻ يوجد ملخص باللغة العربية
We report a neutron diffraction study of the multiferroic mechanism in (ND4)2FeCl5D2O, a molecular compound that exhibits magnetically induced ferroelectricity. This material exhibits two successive magnetic transitions on cooling: a long-range order transition to an incommensurate (IC) collinear sinusoidal spin state at TN=7.3 K, followed by a second transition to an IC cycloidal spin state at TFE=6.8 K, the later of which is accompanied by spontaneous ferroelectric polarization. The cycloid structure is strongly distorted by spin-lattice coupling as evidenced by the observations of both odd and even higher-order harmonics associated with the cycloid wave vector, and a weak commensurate phase that coexists with the IC phase. The appearance of the 2nd-order harmonic coincides with the onset of the electric polarization, thereby providing unambiguous evidence that the induced electric polarization is mediated by the spin-lattice interaction. Our results for this system, in which the orbital angular momentum is expected to be quenched, are remarkably similar to those of the prototypical TbMnO3, in which the magnetoelectric effect is attributed to spin-orbit coupling.
We report a comprehensive inelastic neutron scattering study of the hybrid molecule-based multiferroic compound (ND4)2FeCl5D2O in the zero-field incommensurate cycloidal phase and the high-field quasi-collinear phase. The spontaneous electric polariz
The structural, phonon, magnetic, dielectric, and magneto dielectric responses of the pure bulk Brownmillerite compound Ca2FeCoO5 are reported. This compound showed giant magneto dielectric response (10%-24%) induced by strong spin-lattice coupling a
We use inelastic neutron scattering to study acoustic phonons and spin excitations in single crystals of NaFeAs, a parent compound of iron pnictide superconductors. NaFeAs exhibits a tetragonal-to-orthorhombic structural transition at $T_sapprox 58$
We have performed high resolution neutron diffraction and inelastic neutron scattering experiments in the frustrated multiferroic hexagonal compounds RMnO3 (R=Ho, Yb, Sc, Y), which provide evidence of a strong magneto-elastic coupling in the the whol
Spin-orbit entangled magnetic dipoles, often referred to as pseudospins, provide a new avenue to explore novel magnetism inconceivable in the weak spin-orbit coupling limit, but the nature of their low-energy interactions remains to be understood. We