ترغب بنشر مسار تعليمي؟ اضغط هنا

Hidden-Fermion Representation of Self-energy in Pseudogap and Superconducting States of Two-Dimensional Hubbard Model

80   0   0.0 ( 0 )
 نشر من قبل Shiro Sakai
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the frequency-dependent structure of electronic self-energy in the pseudogap and superconducting states of the two-dimensional Hubbard model. We present the self-energy calculated with the cellular dynamical mean-field theory systematically in the space of temperature, electron density, and interaction strength. We show that the low-frequency part of the self-energy is well represented by a simple equation, which describes the transitions of an electron to and from a hidden fermionic state. By fitting the numerical data with this simple equation, we determine the parameters characterizing the hidden fermion and discuss its identity. The simple expression of the self-energy offers a way to organize numerical data of this uncomprehended superconducting and pseudogap states, as well as a useful tool to analyze spectroscopic experimental results. The successful description by the simple two-component fermion model supports the idea of dark and bright fermions emerging from a bare electron as bistable excitations in doped Mott insulators.



قيم البحث

اقرأ أيضاً

80 - Steve Allen 2000
In this thesis, I present a non-perturbative approach to the single-band attractive Hubard model which is an extension of previous work by Vilk and Tremblay on the repulsive model. Exact results are derived in the general context of functional deriva tive approaches to many-body theories. The first step of the approximation is based on a local field type ansatz. All physical quantities can be expressed as a function of double-occupancy (in addition to temperature and filling). Double-occupancy is determined without adjustable parameter by imposing the Pauli principle and a crucial sum-rule, making the first step of the approximation Two-Particle Self-Consistent. The final expression for the self-energy is obtained by calculating the low-frequency part of the exact expression with the two-particle correlation, Green function and renormalized vertex obtained in the first step of the approximation. The Mermin-Wagner theorem in two dimensions is automatically satisfied. Application of this non-perturbative many-body approach to the intermediate coupling regime shows quantitative agreement with quantum Monte Carlo calculations. Both approaches predict the existence of a pseudogap in the single-particle spectral weight. I present some physical properties, such as correlation lengths, superfluid density, and characteristic pair fluctuation energy, to highlight the origin of the pseudogap in the weak to intermediate coupling regime. These results suggest that two-dimensional systems that are described by a symmetry group larger than SO(2) could have a larger region of pseudogap behavior. High-temperature superconductors may belong to that category of systems.
We consider the one-band Hubbard model on the square lattice by using variational and Greens function Monte Carlo methods, where the variational states contain Jastrow and backflow correlations on top of an uncorrelated wave function that includes BC S pairing and magnetic order. At half filling, where the ground state is antiferromagnetically ordered for any value of the on-site interaction $U$, we can identify a hidden critical point $U_{rm Mott}$, above which a finite BCS pairing is stabilized in the wave function. The existence of this point is reminiscent of the Mott transition in the paramagnetic sector and determines a separation between a Slater insulator (at small values of $U$), where magnetism induces a potential energy gain, and a Mott insulator (at large values of $U$), where magnetic correlations drive a kinetic energy gain. Most importantly, the existence of $U_{rm Mott}$ has crucial consequences when doping the system: We observe a tendency to phase separation into a hole-rich and a hole-poor region only when doping the Slater insulator, while the system is uniform by doping the Mott insulator. Superconducting correlations are clearly observed above $U_{rm Mott}$, leading to the characteristic dome structure in doping. Furthermore, we show that the energy gain due to the presence of a finite BCS pairing above $U_{rm Mott}$ shifts from the potential to the kinetic sector by increasing the value of the Coulomb repulsion.
Recent excperiments (ARPES, Raman) suggest the presence of two distinct energy gaps in high-Tc superconductors (HTSC), exhibiting different doping dependences. Results of a variational cluster approach to the superconducting state of the two-dimensio nal Hubbard model are presented which show that this model qualitatively describes this gap dichotomy: One gap (antinodal) increases with less doping, a behavior long considered as reflecting the general gap behavior of the HTSC. On the other hand, the near-nodal gap does even slightly decrease with underdoping. An explanation of this unexpected behavior is given which emphasizes the crucial role of spin fluctuations in the pairing mechanism.
We study the competition between stripe states with different periods and a uniform $d$-wave superconducting state in the extended 2D Hubbard model at 1/8 hole doping using infinite projected entangled-pair states (iPEPS). With increasing strength of negative next-nearest neighbor hopping $t$, the preferred period of the stripe decreases. For the values of $t$ predicted for cuprate high-T$_c$ superconductors, we find stripes with a period 4 in the charge order, in agreement with experiments. Superconductivity in the period 4 stripe is suppressed at $1/8$ doping. Only at larger doping, $0.18 lesssim delta < 0.25$, the period 4 stripe exhibits coexisting $d$-wave superconducting order. The uniform $d$-wave state is only favored for sufficiently large positive $t$.
One of the distinctive features of hole-doped cuprate superconductors is the onset of a `pseudogap below a temperature $T^*$. Recent experiments suggest that there may be a connection between the existence of the pseudogap and the topology of the Fer mi surface. Here, we address this issue by studying the two-dimensional Hubbard model with two distinct numerical methods. We find that the pseudogap only exists when the Fermi surface is hole-like and that, for a broad range of parameters, its opening is concomitant with a Fermi surface topology change from electron- to hole-like. We identify a common link between these observations: the pole-like feature of the electronic self-energy associated with the formation of the pseudogap is found to also control the degree of particle-hole asymmetry, and hence the Fermi surface topology transition. We interpret our results in the framework of an SU(2) gauge theory of fluctuating antiferromagnetism. We show that a mean-field treatment of this theory in a metallic state with U(1) topological order provides an explanation of this pole-like feature, and a good description of our numerical results. We discuss the relevance of our results to experiments on cuprates.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا