ﻻ يوجد ملخص باللغة العربية
Within a dense environment ($rho approx 10^{14},$atoms/cm$^3$) at ultracold temperatures ($T < 1,mu{}text{K}$), a single atom excited to a Rydberg state acts as a reaction center for surrounding neutral atoms. At these temperatures almost all neutral atoms within the Rydberg orbit are bound to the Rydberg core and interact with the Rydberg atom. We have studied the reaction rate and products for $nS$ $^{87}$Rb Rydberg states and we mainly observe a state change of the Rydberg electron to a high orbital angular momentum $l$, with the released energy being converted into kinetic energy of the Rydberg atom. Unexpectedly, the measurements show a threshold behavior at $napprox 100$ for the inelastic collision time leading to increased lifetimes of the Rydberg state independent of the densities investigated. Even at very high densities ($rhoapprox4.8times 10^{14},text{cm}^{-3}$), the lifetime of a Rydberg atom exceeds $10,mutext{s}$ at $n > 140$ compared to $1,mutext{s}$ at $n=90$. In addition, a second observed reaction mechanism, namely Rb$_2^+$ molecule formation, was studied. Both reaction products are equally probable for $n=40$ but the fraction of Rb$_2^+$ created drops to below 10$,$% for $nge90$.
We report the experimental observation of strong two-color optical nonlinearity in an ultracold gas of $^{85}mathrm{Rb}$-$^{87}mathrm{Rb}$ atom mixture. By simultaneously coupling two probe transitions of $^{85}$Rb and $^{87}$Rb atoms to Rydberg stat
Cold atomic gases resonantly excited to Rydberg states can exhibit strong optical nonlinearity at the single photon level. We observe that in such samples radiation trapping leads to an additional mechanism for Rydberg excitation. Conversely we demon
In plasmas at very low temperatures formation of neutral atoms is dominated by collisional three-body recombination, owing to the strong ~ T^(-9/2) scaling of the corresponding recombination rate with the electron temperature T. While this law is wel
We present a novel spectroscopic method for probing the insitu~density of quantum gases. We exploit the density-dependent energy shift of highly excited {Rydberg} states, which is of the order $10$MHz,/,1E14,cm$^{text{-3}}$ for rubidium~for triplet s
In the laser excitation of ultracold atoms to Rydberg states, we observe a dramatic suppression caused by van der Waals interactions. This behavior is interpreted as a local excitation blockade: Rydberg atoms strongly inhibit excitation of their neig