ﻻ يوجد ملخص باللغة العربية
Magnetic topological insulators such as Cr-doped (Bi,Sb)2Te3 provide a platform for the realization of versatile time-reversal symmetry-breaking physics. By constructing heterostructures with Neel order in an antiferromagnetic CrSb and magnetic topological order in Cr-doped (Bi,Sb)2Te3, we realize emergent interfacial magnetic phenomena which can be tailored through artificial structural engineering. Through deliberate geometrical design of heterostructures and superlattices, we demonstrate the use of antiferromagnetic exchange coupling in manipulating the magnetic properties of the topological surface massive Dirac fermions. This work provides a new framework on integrating topological insulators with antiferromagnetic materials and unveils new avenues towards dissipationless topological antiferromagnetic spintronics.
Engineering the anomalous Hall effect (AHE) in the emerging magnetic topological insulators (MTIs) has great potentials for quantum information processing and spintronics applications. In this letter, we synthesize the epitaxial Bi2Te3/MnTe magnetic
Antiferromagnets (AFMs) with zero net magnetization are proposed as active elements in future spintronic devices. Depending on the critical thickness of the AFM thin films and the measurement temperature, bimetallic Mn-based alloys and transition met
Controlling interfacial interactions in magnetic/topological insulator heterostructures is a major challenge for the emergence of novel spin-dependent electronic phenomena. As for any rational design of heterostructures that rely on proximity effects
We propose to use ferromagnetic insulator MnBi2Se4/Bi2Se3/antiferromagnetic insulator Mn2Bi2Se5 heterostructures for the realization of the axion insulator state. Importantly, the axion insulator state in such heterostructures only depends on the mag
Transport signatures of exchange gap opening because of magnetic proximity effect (MPE) are reported for bilayer structures of Bi2Se3 thin films on yttrium iron garnet (YIG) and thulium iron garnet (TmIG) of perpendicular magnetic anisotropy (PMA). P