ترغب بنشر مسار تعليمي؟ اضغط هنا

Averaged Form of the Hardy-Littlewood Conjecture

162   0   0.0 ( 0 )
 نشر من قبل Jori Merikoski
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English
 تأليف Jori Merikoski




اسأل ChatGPT حول البحث

We study the prime pair counting functions $pi_{2k}(x),$ and their averages over $2k.$ We show that good results can be achieved with relatively little effort by considering averages. We prove an asymptotic relation for longer averages of $pi_{2k}(x)$ over $2k leq x^theta,$ $theta > 7/12,$ and give an almost sharp lower bound for fairly short averages over $k leq C log x,$ $C >1/2.$ We generalize the ideas to other related problems.



قيم البحث

اقرأ أيضاً

86 - Jori Merikoski 2016
We study the asymptotic behaviour of the prime pair counting function $pi_{2k}(n)$ by the means of the discrete Fourier transform on $mathbb{Z}/ nmathbb{Z}$. The method we develop can be viewed as a discrete analog of the Hardy-Littlewood circle meth od. We discuss some advantages this has over the Fourier series on $mathbb{R} /mathbb{Z}$, which is used in the circle method. We show how to recover the main term for $pi_{2k}(n)$ predicted by the Hardy-Littlewood Conjecture from the discrete Fourier series. The arguments rely on interplay of Fourier transforms on $mathbb{Z}/ nmathbb{Z}$ and on its subgroup $mathbb{Z}/ Qmathbb{Z},$ $Q , | , n.$
133 - Jean Dolbeault 2018
This paper is devoted to a new family of reverse Hardy-Littlewood-Sobolev inequalities which involve a power law kernel with positive exponent. We investigate the range of the admissible parameters and characterize the optimal functions. A striking o pen question is the possibility of concentration which is analyzed and related with nonlinear diffusion equations involving mean field drifts.
106 - Shuichi Sato 2016
We consider Littlewood-Paley functions associated with non-isotropic dilations. We prove that they can be used to characterize the parabolic Hardy spaces of Calder{o}n-Torchinsky.
258 - Jingbo Dou , Meijun Zhu 2013
There are at least two directions concerning the extension of classical sharp Hardy-Littlewood-Sobolev inequality: (1) Extending the sharp inequality on general manifolds; (2) Extending it for the negative exponent $lambda=n-alpha$ (that is for the c ase of $alpha>n$). In this paper we confirm the possibility for the extension along the first direction by establishing the sharp Hardy-Littlewood-Sobolev inequality on the upper half space (which is conformally equivalent to a ball). The existences of extremal functions are obtained; And for certain range of the exponent, we classify all extremal functions via the method of moving sphere.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا