ﻻ يوجد ملخص باللغة العربية
We present the results of a new search for galaxy-scale strong lensing systems in CFHTLS Wide. Our lens-finding technique involves a preselection of potential lens galaxies, applying simple cuts in size and magnitude. We then perform a Principal Component Analysis of the galaxy images, ensuring a clean removal of the light profile. Lensed features are searched for in the residual images using the clustering topometric algorithm DBSCAN. We find 1098 lens candidates that we inspect visually, leading to a cleaned sample of 109 new lens candidates. Using realistic image simulations we estimate the completeness of our sample and show that it is independent of source surface brightness, Einstein ring size (image separation) or lens redshift. We compare the properties of our sample to previous lens searches in CFHTLS. Including the present search, the total number of lenses found in CFHTLS amounts to 678, which corresponds to ~4 lenses per square degree down to i=24.8. This is equivalent to ~ 60.000 lenses in total in a survey as wide as Euclid, but at the CFHTLS resolution and depth.
We extend the halo-based group finder developed by Yang et al. (2005b) to use data {it simultaneously} with either photometric or spectroscopic redshifts. A mock galaxy redshift surveys constructed from a high-resolution N-body simulation is used to
We present an algorithm using Principal Component Analysis (PCA) to subtract galaxies from imaging data, and also two algorithms to find strong, galaxy-scale gravitational lenses in the resulting residual image. The combined method is optimized to fi
With the development of modern technologies such as IFUs, it is possible to obtain data cubes in which one produces images with spectral resolution. To extract information from them can be quite complex, and hence the development of new methods of da
Identifying galaxy groups from redshift surveys of galaxies plays an important role in connecting galaxies with the underlying dark matter distribution. Current and future high-$z$ spectroscopic surveys, usually incomplete in redshift sampling, prese
Fossil groups (FGs) have been discovered twenty-five years ago, and are now defined as galaxy groups with an X-ray luminosity higher than $10^{42} h_{50}^{-2}$ erg s$^{-1}$ and a brightest group galaxy brighter than the other group members by at leas