ﻻ يوجد ملخص باللغة العربية
In this paper we investigate cooperative secure communications in a four-node cognitive radio network where the secondary receiver is treated as a potential eavesdropper with respect to the primary transmission. The secondary user is allowed to transmit his own signals under the condition that the primary users secrecy rate and transmission scheme are intact. Under this setting we derive the secondary users achievable rates and the related constraints to guarantee the primary users weak secrecy rate, when Gelfand-Pinsker coding is used at the secondary transmitter. In addition, we propose a multi-phase transmission scheme to include 1) the phases of the clean relaying with cooperative jamming and 2) the latency to successfully decode the primary message at the secondary transmitter. A capacity upper bound for the secondary user is also derived. Numerical results show that: 1) the proposed scheme can outperform the traditional ones by properly selecting the secondary users parameters of different transmission schemes according to the relative positions of the nodes; 2) the derived capacity upper bound is close to the secondary users achievable rate within 0.3 bits/channel use, especially when the secondary transmitter/receiver is far/close enough to the primary receiver/transmitter, respectively. Thereby, a smart secondary transmitter is able to adapt its relaying and cooperative jamming to guarantee primary secrecy rates and to transmit its own data at the same time from relevant geometric positions.
This paper investigates the application of intelligent reflecting surface (IRS) in an underlay cognitive radio network (CRN), where a multi-antenna cognitive base station (CBS) utilizes spectrum assigned to the primary user (PU) to communicate with a
With the increasing number of wireless communication systems and the demand for bandwidth, the wireless medium has become a congested and contested environment. Operating under such an environment brings several challenges, especially for military co
Cognitive radio networks (CRNs) and millimeter wave (mmWave) communications are two major technologies to enhance the spectrum efficiency (SE). Considering that the SE improvement in the CRNs is limited due to the interference temperature imposed on
In this paper, an intelligent reflecting surface (IRS) assisted spectrum sharing underlay cognitive radio (CR) wiretap channel (WTC) is studied, and we aim at enhancing the secrecy rate of secondary user in this channel subject to total power constra
Secure wireless information and power transfer based on directional modulation is conceived for amplify-and-forward (AF) relaying networks. Explicitly, we first formulate a secrecy rate maximization (SRM) problem, which can be decomposed into a twin-