ترغب بنشر مسار تعليمي؟ اضغط هنا

Rieger-type periodicity during solar cycles 14-24: estimation of dynamo magnetic field strength in the solar interior

291   0   0.0 ( 0 )
 نشر من قبل Teimuraz Zaqarashvili
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Solar activity undergoes a variation over time scales of several months known as Rieger-type periodicity, which usually occurs near maxima of sunspot cycles. An early analysis showed that the periodicity appears only in some cycles, and is absent in other cycles. But the appearance/absence during different cycles has not been explained. We performed a wavelet analysis of sunspot data from the Greenwich Royal Observatory and the Royal Observatory of Belgium during cycles 14-24. We found that the Rieger-type periods occur in all cycles, but they are cycle-dependent: shorter periods occur during stronger cycles. Our analysis revealed a periodicity of 185-195 days during the weak cycles 14-15 and 24, and a periodicity of 155-165 days during the stronger cycles 16-23. We derived the dispersion relation of the spherical harmonics of the magnetic Rossby waves in the presence of differential rotation and a toroidal magnetic field in the dynamo layer near the base of the convection zone. This showed that the harmonic of fast Rossby waves with m=1 and n=4, where m (n) indicate the toroidal (poloidal) wavenumbers, respectively, perfectly fit with the observed periodicity. The variation of the toroidal field strength from weaker to stronger cycles may lead to the different periods found in those cycles, which explains the observed enigmatic feature of the Rieger-type periodicity. Finally, we used the observed periodicity to estimate the dynamo field strength during cycles 14-24. Our estimations suggest a field strength of 40 kG for the stronger cycles, and 20 kG for the weaker cycles.



قيم البحث

اقرأ أيضاً

Rieger-type periodicity has been detected in different activity indices over many solar cycles. It was recently shown that the periodicity correlates with solar activity having a shorter period during stronger cycles. Solar activity level is generall y asymmetric between northern and southern hemispheres, which could suggest the presence of a similar behavior in the Rieger-type periodicity. We analyse the sunspot area/number and the total magnetic flux data for northern and southern hemispheres during solar cycles 19-23 which had remarkable north-south asymmetry. Using wavelet analysis of sunspot area and number during the north-dominated cycles (19-20) we obtained the periodicity of 160-165 days in the stronger northern hemisphere and 180-190 days in the weaker southern hemisphere. On the other hand, south-dominated cycles (21-23) display the periodicity of 155-160 days in the stronger southern hemisphere and 175-188 days in the weaker northern hemisphere. Therefore, the Rieger-type periodicity has the north-south asymmetry in sunspot area/number data during solar cycles with strong hemispheric asymmetry. We suggest that the periodicity is caused by magnetic Rossby waves in the internal dynamo layer. Using the dispersion relation of magnetic Rossby waves and observed Rieger periodicity we estimated the magnetic field strength in the layer as 45-49 kG in more active hemispheres (north during the cycles 19-20 and south during the cycles 21-23) and 33-40 kG in weaker hemispheres. The estimated difference in the hemispheric field strength is around 10 kG, which provides a challenge for dynamo models. Total magnetic flux data during the cycle 20-23 reveals no clear north-south asymmetry which needs to be explained in the future.
The extended minimum of Solar Cycle 23, the extremely quiet solar-wind conditions prevailing, and the mini-maximum of Solar Cycle 24 drew global attention and many authors have since attempted to predict the amplitude of the upcoming Solar Cycle 25, which is predicted to be the third successive weak cycle; it is a unique opportunity to probe the Sun during such quiet periods. Earlier work has established a steady decline, over two decades, in solar photospheric fields at latitudes above $45^{circ}$ and a similar decline in solar-wind micro-turbulence levels as measured by interplanetary scintillation (IPS) observations. However, the relation between the photospheric magnetic fields and those in the low corona/solar-wind are not straightforward. Therefore, in the present article, we have used potential-field source-surface (PFSS) extrapolations to deduce global magnetic-fields using synoptic magnetograms observed with National Solar Observatory (NSO), Kitt Peak, USA (NSO/KP) and Solar Optical Long-term Investigation of the Sun (NSO/SOLIS) instruments during 1975-2018. Furthermore, we have measured the normalized scintillation index [m] using the IPS observations carried out at the Institute of Space Earth Environment Research (ISEE), Japan during 1983-2017. From these observations, we have found that, since the mid-1990s, the magnetic-field over different latitudes at 2.5 $rm R_{odot}$ and 10 $rm R_{odot}$(extrapolated using PFSS method) has decreased by $approx 11.3-22.2 %$. In phase with the declining magnetic-fields, the quantity m also declined by $approx 23.6 %$. These observations emphasize the inter-relationship between the global magnetic-field and various turbulence parameters in the solar corona and solar wind.
395 - Benjamin P. Brown 2011
Young solar-type stars rotate rapidly and many are magnetically active; some undergo magnetic cycles similar to the 22-year solar activity cycle. We conduct simulations of dynamo action in rapidly rotating suns with the 3D MHD anelastic spherical har monic (ASH) code to explore dynamo action achieved in the convective envelope of a solar-type star rotating at 5 times the current solar rotation rate. Striking global-scale magnetic wreaths appear in the midst of the turbulent convection zone and show rich time-dependence. The dynamo exhibits cyclic activity and undergoes quasi-periodic polarity reversals where both the global-scale poloidal and toroidal fields change in sense on a roughly 1500 day time scale. These magnetic activity patterns emerge spontaneously from the turbulent flow and are more organized temporally and spatially than those realized in our previous simulations of the solar dynamo. We assess in detail the competing processes of magnetic field creation and destruction within our simulations that contribute to the global-scale reversals. We find that the mean toroidal fields are built primarily through an $Omega$-effect, while the mean poloidal fields are built by turbulent correlations which are not necessarily well represented by a simple $alpha$-effect. During a reversal the magnetic wreaths propagate towards the polar regions, and this appears to arise from a poleward propagating dynamo wave. The primary response in the convective flows involves the axisymmetric differential rotation which shows variations associated with the poleward propagating magnetic wreaths. In the Sun, similar patterns are observed in the poleward branch of the torsional oscillations, and these may represent poleward propagating magnetic fields deep below the solar surface. [abridged]
Apart from the 11-year solar cycle, another periodicity around 155-160 days was discovered during solar cycle 21 in high energy solar flares, and its presence in sunspot areas and strong magnetic flux has been also reported. This periodicity has an e lusive and enigmatic character, since it usually appears only near the maxima of solar cycles, and seems to be related with a periodic emergence of strong magnetic flux at the solar surface. Therefore, it is probably connected with the tachocline, a thin layer located near the base of the solar convection zone, where strong dynamo magnetic field is stored. We study the dynamics of Rossby waves in the tachocline in the presence of a toroidal magnetic field and latitudinal differential rotation. Our analysis shows that the magnetic Rossby waves are generally unstable and that the growth rates are sensitive to the magnetic field strength and to the latitudinal differential rotation parameters. Variation of the differential rotation and the magnetic field strength throughout the solar cycle enhance the growth rate of a particular harmonic in the upper part of the tachocline around the maximum of the solar cycle. This harmonic is symmetric with respect to the equator and has a period of 155-160 days. A rapid increase of the wave amplitude could give place to a magnetic flux emergence leading to observed periodicities in solar activity indicators related with magnetic flux.
81 - Mykola I. Pishkalo 2019
The Suns polar magnetic fields change their polarity near the maximum of sunspot activity. We analyzed the polarity reversal epochs in Solar Cycles 21 to 24. There was a triple reversal in the N-hemisphere in Solar Cycle 24 and single reversals in th e rest of cases. Epochs of the polarity reversal from measurements of the Wilcox Solar Observatory (WSO) are compared with ones when the reversals were completed in the N- and S-hemispheres. The reversal times were compared with hemispherical sunspot activity and with the Heliospheric Current Sheet (HCS) tilts, too. It was found that reversals occurred at the epoch of the sunspot activity maximum in Cycles 21 and 23, and after the corresponding maxima in Cycles 22 and 24, and one-two years after maximal HCS tilts calculated in WSO. Reversals in Solar Cycles 21, 22, 23, and 24 were completed first in the N-hemisphere and then in the S-hemisphere after 0.6, 1.1, 0.7, and 0.9 years, respectively. The polarity inversion in the near-polar latitude range pm(55-90)^circ occurred from 0.5 to 2.0 years earlier that the times when the reversals were completed in corresponding hemisphere. Using the maximal smoothed WSO polar field as precursor we estimated that amplitude of Solar Cycle 25 will reach 116 pm 12 in values of smoothed monthly sunspot numbers and will be comparable with the current cycle amplitude equaled to 116.4.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا