ﻻ يوجد ملخص باللغة العربية
In this paper we set a framework in which experiments whose goal is to test QED predictions can be used in a more general way to test non-linear electrodynamics (NLED) which contains low-energy QED as a special case. We review some of these experiments and we establish limits on the different free parameters by generalizing QED predictions in the framework of NLED. We finally discuss the implications of these limits on bound systems and isolated charged particles for which QED has been widely and successfully tested.
We consider a sub-wavelength periodic layered medium whose slabs are filled by arbitrary linear metamaterials and standard nonlinear Kerr media and we show that the homogenized medium behaves as a Kerr medium whose parameters can assume values not av
Quantum electrodynamics (QED) effects may be included in physical processes of magnetar and pulsar magnetospheres with strong magnetic fields. Involving the quantum corrections, the Maxwell electrodynamics is modified to non-linear electrodynamics. I
We obtain two exact solutions of Einstein gravity coupled to nonlinear electrodynamics (NLED) in $(2+ 1)$-dimensional Anti-de Sitter (AdS) spacetime. The solutions are characterized by the mass $M$, angular momentum $J$, cosmological constant or (ant
We show that there is an inconsistency in the class of solutions obtained in Phys. Rev. D {bf 95}, 084037 (2017). This inconsistency is due to the approximate relation between lagrangian density and its derivative for Non-Linear Electrodynamics. We p
Photonic devices play an increasingly important role in advancing physics and engineering, and while improvements in nanofabrication and computational methods have driven dramatic progress in expanding the range of achievable optical characteristics,