ﻻ يوجد ملخص باللغة العربية
We present a comparison of molecular clouds (MCs) from a simulation of supernova-driven interstellar medium (ISM) turbulence with real MCs from the Outer Galaxy Survey. The radiative transfer calculations to compute synthetic CO spectra are carried out assuming the CO relative abundance depends only on gas density, according to four different models. Synthetic MCs are selected above a threshold brightness temperature value, $T_{rm B,min}=1.4$ K, of the $J=1-0$ $^{12}$CO line, generating 16 synthetic catalogs (four different spatial resolutions and four CO abundance models), each containing up to several thousands MCs. The comparison with the observations focuses on the mass and size distributions and on the velocity-size and mass-size Larson relations. The mass and size distributions are found to be consistent with the observations, with no significant variations with spatial resolution or chemical model, except in the case of the unrealistic model with constant CO abundance. The velocity-size relation is slightly too steep for some of the models, while the mass-size relation is a bit too shallow for all models only at a spatial resolution $dxapprox 1$ pc. The normalizations of the Larson relations show a clear dependence on spatial resolution, for both the synthetic and the real MCs. The comparison of the velocity-size normalization suggests that the SN rate in the Perseus arm is approximately 70% or less of the rate adopted in the simulation. Overall, the realistic properties of the synthetic clouds confirm that supernova-driven turbulence can explain the origin and dynamics of MCs.
Turbulence is ubiquitous in molecular clouds (MCs), but its origin is still unclear because MCs are usually assumed to live longer than the turbulence dissipation time. Interstellar medium (ISM) turbulence is likely driven by SN explosions, but it ha
The compressibility of molecular cloud (MC) turbulence plays a crucial role in star formation models, because it controls the amplitude and distribution of density fluctuations. The relation between the compressive ratio (the ratio of powers in compr
We present synthetic Hi and CO observations of a simulation of decaying turbulence in the thermally bistable neutral medium. We first present the simulation, with clouds initially consisting of clustered clumps. Self-gravity causes these clump cluste
We compute the star formation rate (SFR) in molecular clouds (MCs) that originate {it ab initio} in a new, higher-resolution simulation of supernova-driven turbulence. Because of the large number of well-resolved clouds with self-consistent boundary
We present high-resolution (sub-parsec) observations of a giant molecular cloud in the nearest star-forming galaxy, the Large Magellanic Cloud. ALMA Band 6 observations trace the bulk of the molecular gas in $^{12}$CO(2-1) and high column density reg