ﻻ يوجد ملخص باللغة العربية
In this work, we probe a class of neutrino mass models through the lepton flavor violating interactions of a singlet charged scalar, $S^{pm}$ at the LHC proton-proton collisions with 8 TeV and 14 TeV energies. This scalar couples to the leptons and induces many processes such as $pprightarrowell^{pm}ell^{pm}ell^{mp}+slashed{E}_{T}$. In our analysis we discuss the opposite sign same flavor leptons signal, as well as the background free channel with the tau contribution which can enhance the signal/background ratio for center of mass energies $sqrt{s}$= 8 TeV and $sqrt{s}$ = 14 TeV.
Trilepton event represents one of the probes of the new physics at high energy colliders. In this talk, we consider the search for processes with final states $ell_{alpha}^{pm }ell_{beta}^{pm}ell_{gamma}^{mp}$ + $slashed{E}_{T}$ where ${alpha}$, ${
In this work, we investigate the possibility of probing a class of neutrino mass models at the LHC proton-proton collisions with 8 and 14 TeV energies. The existence of lepton flavor violating interactions for a singlet charged scalar, $S^{pm}$, that
In this work we prob a class of neutrino mass models at both Large Hadron Collider (LHC) energies 8 TeV and 14 TeV. The focus will be on the new introduced interaction terms between a singlet charged scalar, $S^{pm}$, and leptons leading to different
We assess the sensitivity of the LHC, its high energy upgrade, and a prospective 100 TeV hadronic collider to the Dirac Yukawa coupling of the heavy neutrinos in left-right symmetric models (LRSMs). We focus specifically on the trilepton final state
In this short review, we see some typical models in which light neutrino masses are generated at the loop level. These models involve new Higgs bosons whose Yukawa interactions with leptons are constrained by the neutrino oscillation data. Prediction