ﻻ يوجد ملخص باللغة العربية
We consider a Markov chain that iteratively generates a sequence of random finite words in such a way that the $n^{mathrm{th}}$ word is uniformly distributed over the set of words of length $2n$ in which $n$ letters are $a$ and $n$ letters are $b$: at each step an $a$ and a $b$ are shuffled in uniformly at random among the letters of the current word. We obtain a concrete characterization of the Doob-Martin boundary of this Markov chain. Writing $N(u)$ for the number of letters $a$ (equivalently, $b$) in the finite word $u$, we show that a sequence $(u_n)_{n in mathbb{N}}$ of finite words converges to a point in the boundary if, for an arbitrary word $v$, there is convergence as $n$ tends to infinity of the probability that the selection of $N(v)$ letters $a$ and $N(v)$ letters $b$ uniformly at random from $u_n$ and maintaining their relative order results in $v$. We exhibit a bijective correspondence between the points in the boundary and ergodic random total orders on the set ${a_1, b_1, a_2, b_2, ldots }$ that have distributions which are separately invariant under finite permutations of the indices of the $a$s and those of the $b$s. We establish a further bijective correspondence between the set of such random total orders and the set of pairs $(mu, u)$ of diffuse probability measures on $[0,1]$ such that $frac{1}{2}(mu+ u)$ is Lebesgue measure: the restriction of the random total order to ${a_1, b_1, ldots, a_n, b_n}$ is obtained by taking $X_1, ldots, X_n$ (resp. $Y_1, ldots, Y_n$) i.i.d. with common distribution $mu$ (resp. $ u$), letting $(Z_1, ldots, Z_{2n})$ be ${X_1, Y_1, ldots, X_n, Y_n}$ in increasing order, and declaring that the $k^{mathrm{th}}$ smallest element in the restricted total order is $a_i$ (resp. $b_j$) if $Z_k = X_i$ (resp. $Z_k = Y_j$).
RNA motifs typically consist of short, modular patterns that include base pairs formed within and between modules. Estimating the abundance of these patterns is of fundamental importance for assessing the statistical significance of matches in genome
From the perspective of probability, the stability of growing network is studied in the present paper. Using the DMS model as an example, we establish a relation between the growing network and Markov process. Based on the concept and technique of fi
Let $W^{(n)}$ be the $n$-letter word obtained by repeating a fixed word $W$, and let $R_n$ be a random $n$-letter word over the same alphabet. We show several results about the length of the longest common subsequence (LCS) between $W^{(n)}$ and $R_n
We present a Markov chain on the $n$-dimensional hypercube ${0,1}^n$ which satisfies $t_{{rm mix}}(epsilon) = n[1 + o(1)]$. This Markov chain alternates between random and deterministic moves and we prove that the chain has cut-off with a window of s
We study a simple Markov chain, the switch chain, on the set of all perfect matchings in a bipartite graph. This Markov chain was proposed by Diaconis, Graham and Holmes as a possible approach to a sampling problem arising in Statistics. We ask: for