ترغب بنشر مسار تعليمي؟ اضغط هنا

High-temperature quantum Hall effect in finite gapped HgTe quantum wells

119   0   0.0 ( 0 )
 نشر من قبل Thomas Khouri
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the observation of the quantum Hall effect at high temperatures in HgTe quantum wells with a finite band gap and a thickness below and above the critical thickness $d_textnormal{c}$ that separates a conventional semiconductor from a two-dimensional topological insulator. At high carrier concentrations we observe a quantized Hall conductivity up to 60,K with energy gaps between Landau Levels of the order of 25,meV, in good agreement with the Landau Level spectrum obtained from $mathbf{kcdot p}$-calculations. Using the scaling approach for the plateau-plateau transition at $ u=2rightarrow 1$, we find the scaling coefficient $kappa =0.45 pm 0.04$ to be consistent with the universality of scaling theory and we do not find signs of increased electron-phonon interaction to alter the scaling even at these elevated temperatures. Comparing the high temperature limit of the quantized Hall resistance in HgTe quantum wells with a finite band gap with room temperature experiment in graphene, we find the energy gaps at the break-down of the quantization to exceed the thermal energy by the same order of magnitude.



قيم البحث

اقرأ أيضاً

Magnetotransport measurements are presented on paramagnetic (Hg,Mn)Te quantum wells (QWs) with an inverted band structure. Gate-voltage controlled density dependent measurements reveal an unusual behavior in the transition regime from n- to p-type co nductance: A very small magnetic field of approximately 70 mT is sufficient to induce a transition into the nu = -1 quantum Hall state, which extends up to at least 10 Tesla. The onset field value remains constant for a unexpectedly wide gate-voltage range. Based on temperature and angle-dependent magnetic field measurements we show that the unusual behavior results from the realization of the quantum anomalous Hall state in these magnetically doped QWs.
172 - Markus Koenig 2007
Recent theory predicted that the Quantum Spin Hall Effect, a fundamentally novel quantum state of matter that exists at zero external magnetic field, may be realized in HgTe/(Hg,Cd)Te quantum wells. We have fabricated such sample structures with low density and high mobility in which we can tune, through an external gate voltage, the carrier conduction from n-type to the p-type, passing through an insulating regime. For thin quantum wells with well width d < 6.3 nm, the insulating regime shows the conventional behavior of vanishingly small conductance at low temperature. However, for thicker quantum wells (d > 6.3 nm), the nominally insulating regime shows a plateau of residual conductance close to 2e^2/h. The residual conductance is independent of the sample width, indicating that it is caused by edge states. Furthermore, the residual conductance is destroyed by a small external magnetic field. The quantum phase transition at the critical thickness, d = 6.3 nm, is also independently determined from the magnetic field induced insulator to metal transition. These observations provide experimental evidence of the quantum spin Hall effect.
We report on magnetospectroscopy of HgTe quantum wells in magnetic fields up to 45 T in temperature range from 4.2 K up to 185 K. We observe intra- and inter-band transitions from zero-mode Landau levels, which split from the bottom conduction and up per valence subbands, and merge under the applied magnetic field. To describe experimental results, realistic temperature-dependent calculations of Landau levels have been performed. We show that although our samples are topological insulators at low temperatures only, the signature of such phase persists in optical transitions at high temperatures and high magnetic fields. Our results demonstrate that temperature-dependent magnetospectroscopy is a powerful tool to discriminate trivial and topological insulator phases in HgTe quantum wells.
231 - M. Guigou , P. Recher , J. Cayssol 2011
We study the spin-dependent transmission through interfaces between a HgTe/CdTe quantum well (QW) and a metal - both for the normal metal and the superconducting case. Interestingly, we discover a new type of spin Hall effect at these interfaces that happens to exist even in the absence of structure and bulk inversion asymmetry within each subsystem (i.e. the QW and the metal). Thus, this is a pure boundary spin Hall effect which can be directly related to the existence of exponentially localized edge states at the interface. We demonstrate how this effect can be measured and functionalized for an all-electric spin injection into normal metal leads.
156 - B. Wittmann , R. Ravash , H. Diehl 2007
We report on the observation of the terahertz radiation induced circular (CPGE) and linear (LPGE) photogalvanic effects in HgTe quantum wells. The current response is well described by the phenomenological theory of CPGE and LPGE.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا