ترغب بنشر مسار تعليمي؟ اضغط هنا

Road Detection through Supervised Classification

76   0   0.0 ( 0 )
 نشر من قبل Yasamin Alkhorshid
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Autonomous driving is a rapidly evolving technology. Autonomous vehicles are capable of sensing their environment and navigating without human input through sensory information such as radar, lidar, GNSS, vehicle odometry, and computer vision. This sensory input provides a rich dataset that can be used in combination with machine learning models to tackle multiple problems in supervised settings. In this paper we focus on road detection through gray-scale images as the sole sensory input. Our contributions are twofold: first, we introduce an annotated dataset of urban roads for machine learning tasks; second, we introduce a road detection framework on this dataset through supervised classification and hand-crafted feature vectors.



قيم البحث

اقرأ أيضاً

Robust road detection is a key challenge in safe autonomous driving. Recently, with the rapid development of 3D sensors, more and more researchers are trying to fuse information across different sensors to improve the performance of road detection. A lthough many successful works have been achieved in this field, methods for data fusion under deep learning framework is still an open problem. In this paper, we propose a Siamese deep neural network based on FCN-8s to detect road region. Our method uses data collected from a monocular color camera and a Velodyne-64 LiDAR sensor. We project the LiDAR point clouds onto the image plane to generate LiDAR images and feed them into one of the branches of the network. The RGB images are fed into another branch of our proposed network. The feature maps that these two branches extract in multiple scales are fused before each pooling layer, via padding additional fusion layers. Extensive experimental results on public dataset KITTI ROAD demonstrate the effectiveness of our proposed approach.
Anomaly activities such as robbery, explosion, accidents, etc. need immediate actions for preventing loss of human life and property in real world surveillance systems. Although the recent automation in surveillance systems are capable of detecting t he anomalies, but they still need human efforts for categorizing the anomalies and taking necessary preventive actions. This is due to the lack of methodology performing both anomaly detection and classification for real world scenarios. Thinking of a fully automatized surveillance system, which is capable of both detecting and classifying the anomalies that need immediate actions, a joint anomaly detection and classification method is a pressing need. The task of joint detection and classification of anomalies becomes challenging due to the unavailability of dense annotated videos pertaining to anomalous classes, which is a crucial factor for training modern deep architecture. Furthermore, doing it through manual human effort seems impossible. Thus, we propose a method that jointly handles the anomaly detection and classification in a single framework by adopting a weakly-supervised learning paradigm. In weakly-supervised learning instead of dense temporal annotations, only video-level labels are sufficient for learning. The proposed model is validated on a large-scale publicly available UCF-Crime dataset, achieving state-of-the-art results.
193 - Libo Sun , Haokui Zhang , Wei Yin 2021
Road detection is a critically important task for self-driving cars. By employing LiDAR data, recent works have significantly improved the accuracy of road detection. Relying on LiDAR sensors limits the wide application of those methods when only cam eras are available. In this paper, we propose a novel road detection approach with RGB being the only input during inference. Specifically, we exploit pseudo-LiDAR using depth estimation, and propose a feature fusion network where RGB and learned depth information are fused for improved road detection. To further optimize the network structure and improve the efficiency of the network. we search for the network structure of the feature fusion module using NAS techniques. Finally, be aware of that generating pseudo-LiDAR from RGB via depth estimation introduces extra computational costs and relies on depth estimation networks, we design a modality distillation strategy and leverage it to further free our network from these extra computational cost and dependencies during inference. The proposed method achieves state-of-the-art performance on two challenging benchmarks, KITTI and R2D.
Multi-label image classification is a fundamental but challenging task towards general visual understanding. Existing methods found the region-level cues (e.g., features from RoIs) can facilitate multi-label classification. Nevertheless, such methods usually require laborious object-level annotations (i.e., object labels and bounding boxes) for effective learning of the object-level visual features. In this paper, we propose a novel and efficient deep framework to boost multi-label classification by distilling knowledge from weakly-supervised detection task without bounding box annotations. Specifically, given the image-level annotations, (1) we first develop a weakly-supervised detection (WSD) model, and then (2) construct an end-to-end multi-label image classification framework augmented by a knowledge distillation module that guides the classification model by the WSD model according to the class-level predictions for the whole image and the object-level visual features for object RoIs. The WSD model is the teacher model and the classification model is the student model. After this cross-task knowledge distillation, the performance of the classification model is significantly improved and the efficiency is maintained since the WSD model can be safely discarded in the test phase. Extensive experiments on two large-scale datasets (MS-COCO and NUS-WIDE) show that our framework achieves superior performances over the state-of-the-art methods on both performance and efficiency.
Inferring road graphs from satellite imagery is a challenging computer vision task. Prior solutions fall into two categories: (1) pixel-wise segmentation-based approaches, which predict whether each pixel is on a road, and (2) graph-based approaches, which predict the road graph iteratively. We find that these two approaches have complementary strengths while suffering from their own inherent limitations. In this paper, we propose a new method, Sat2Graph, which combines the advantages of the two prior categories into a unified framework. The key idea in Sat2Graph is a novel encoding scheme, graph-tensor encoding (GTE), which encodes the road graph into a tensor representation. GTE makes it possible to train a simple, non-recurrent, supervised model to predict a rich set of features that capture the graph structure directly from an image. We evaluate Sat2Graph using two large datasets. We find that Sat2Graph surpasses prior methods on two widely used metrics, TOPO and APLS. Furthermore, whereas prior work only infers planar road graphs, our approach is capable of inferring stacked roads (e.g., overpasses), and does so robustly.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا