ﻻ يوجد ملخص باللغة العربية
Massive MIMO, a candidate for 5G technology, promises significant gains in wireless data rates and link reliability by using large numbers of antennas (more than 64) at the base transceiver station (BTS). Extra antennas help by focusing the transmission and reception of signal energy into ever-smaller regions of space. This brings huge improvements in throughput. However, it requires a large number of Radio Frequency (RF) chains (usually equal to number of transmit antennas), which is a major drawback. One approach to overcome these issues is to use Spatial Modulation (SM). In SM, an index of transmit antenna is used as an additional source of information to improve the overall spectral efficiency. In particular, a group of any number of information bits is mapped into two constellations: a signal constellation based on modulation scheme and a spatial constellation to encode the index of the transmit antenna. However, a low spectral efficiency is main drawback of SM. Therefore, a combination of SM with Spatial Multiplexing is an effective way to increase spectral efficiency with limited number of RF chains.
In this paper, we consider the downlink of a massive multiple-input-multiple-output (MIMO) single user transmission system operating in the millimeter wave outdoor narrowband channel environment. We propose a novel receive spatial modulation architec
In this paper, we experimentally demonstrate a real-time software defined multiple input multiple output (MIMO) visible light communication (VLC) system employing link adaptation of spatial multiplexing and spatial diversity. Real-time MIMO signal pr
This paper proposes a joint transmitter-receiver design to minimize the weighted sum power under the post-processing signal-to-interference-and-noise ratio (post-SINR) constraints for all subchannels. Simulation results demonstrate that the algorithm
The Internet of things (IoT) holds much commercial potential and could facilitate distributed multiple-input multiple-output (MIMO) communication in future systems. We study a distributed reception scenario in which a transmitter equipped with multip
This letter presents a novel detection strategy for Spatially-Multiplexed Generalized Spatial Modulation systems. It is a multi-stage detection that produces a list of candidates of the transmitted signal vector, sorted according to the proximity of