ترغب بنشر مسار تعليمي؟ اضغط هنا

Super-biderivations of Lie superalgebras

75   0   0.0 ( 0 )
 نشر من قبل Guangzhe Fan
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we attempt to investigate the super-biderivations of Lie superalgebras. Furthermore, we prove that all super-biderivations on the centerless super-Virasoro algebras are inner super-biderivations. Finally, we study the linear super commuting maps on the centerless super-Virasoro algebras.



قيم البحث

اقرأ أيضاً

154 - Lamei Yuan , Jiaxin Li 2021
In this paper, we introduce the notions of biderivations and linear commuting maps of Hom-Lie algebras and superalgebras. Then we compute biderivations of the q-deformed W(2,2) algebra, q-deformed Witt algebra and superalgebras by elementary and dire ct calculations. As an application, linear commuting maps on these algebras are characterized. Also, we introduce the notions of {alpha}-derivations and {alpha}-biderivations for Hom-Lie algebras and superal- gebras, and we establish a close relation between {alpha}-derivations and {alpha}-biderivations. As an illustration, we prove that the q-deformed W(2;2)-algebra, the q-deformed Witt algebra and superalgebra have no nontrivial {alpha}-biderivations. Finally, we present an example of Hom-Lie superalgebras with nontrivial {alpha}-super-derivations and biderivations.
211 - Wei Bai , Wende Liu 2013
Suppose the ground field to be algebraically closed and of characteristic different from $2$ and $3$. All Heisenberg Lie superalgebras consist of two sup
129 - Yong Yang , Wende Liu 2018
Suppose the ground field $mathbb{F}$ is an algebraically closed field of characteristic different from 2, 3. We determine the Betti numbers and make a decomposition of the associative superalgebra of the cohomology for the model filiform Lie superalg ebra. We also describe the associative superalgebra structures of the (divided power) cohomology for some low-dimensional filiform Lie superalgebras.
129 - Yang Liu , Wende Liu 2018
In this paper, all (super)algebras are over a field $mathbb{F}$ of characteristic different from $2, 3$. We construct the so-called 5-sequences of cohomology for central extensions of a Lie superalgebra and prove that they are exact. Then we prove th at the multipliers of a Lie superalgebra are isomorphic to the second cohomology group with coefficients in the trivial module for the Lie superalgebra under consideration.
73 - Wende Liu , Mengmeng Cai 2018
Let $L$ be a Lie superalgebra over a field of characteristic different from $2,3$ and write $mathrm{ID}^{*}(L)$ for the Lie superalgebra consisting of superderivations mapping $L$ to $L^{2}$ and the central elements to zero. In this paper we first gi ve an upper bound for the superdimension of $mathrm{ID}^{*}(L)$ by means of linear vector space decompositions. Then we characterize the $mathrm{ID}^{*}$-superderivation superalgebras for the nilpotent Lie superalgebras of class 2 and the model filiform Lie superalgebras by methods of block matrices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا