ﻻ يوجد ملخص باللغة العربية
The fermion sign problem is often viewed as a sheer inconvenience that plagues numerical studies of strongly interacting electron systems. Only recently, it has been suggested that fermion signs are fundamental for the universal behavior of critical metallic systems and crucially enhance their degree of quantum entanglement. In this work we explore potential connections between emergent scale invariance of fermion sign structures and scaling properties of bipartite entanglement entropies. Our analysis is based on a wavefunction ansatz that incorporates collective, long-range backflow correlations into fermionic Slater determinants. Such wavefunctions mimic the collapse of a Fermi liquid at a quantum critical point. Their nodal surfaces -- a representation of the fermion sign structure in many-particle configurations space -- show fractal behavior up to a length scale $xi$ that diverges at a critical backflow strength. We show that the Hausdorff dimension of the fractal nodal surface depends on $xi$, the number of fermions and the exponent of the backflow. For the same wavefunctions we numerically calculate the second Renyi entanglement entropy $S_2$. Our results show a cross-over from volume scaling, $S_2sim ell^theta$ ($theta=2$ in $d=2$ dimensions), to the characteristic Fermi-liquid behavior $S_2sim ellln ell$ on scales larger than $xi$. We find that volume scaling of the entanglement entropy is a robust feature of critical backflow fermions, independent of the backflow exponent and hence the fractal dimension of the scale invariant sign structure.
We study the problem of disorder-free metals near a continuous Ising nematic quantum critical point in $d=3+1$ dimensions. We begin with perturbation theory in the `Yukawa coupling between the electrons and undamped bosons (nematic order parameter fl
In multi-band metals quasi-particles arising from different atomic orbitals coexist at a common Fermi surface. Superconductivity in these materials may appear due to interactions within a band (intra-band) or among the distinct metallic bands (inter-
Heavy electron metals on the verge of a quantum phase transition to magnetism show a number of unusual non-fermi liquid properties which are poorly understood. This article discusses in a general way various theoretical aspects of this phase transiti
Quantum criticality in certain heavy-fermion metals is believed to go beyond the Landau framework of order-parameter fluctuations. In particular, there is considerable evidence for Kondo destruction: a disappearance of the static Kondo singlet amplit
We analyze general properties of the perturbation expansion for two-dimensional quantum critical metals with singular forward scattering, such as metals at an Ising nematic quantum critical point and metals coupled to a U(1) gauge field. We derive as