ترغب بنشر مسار تعليمي؟ اضغط هنا

Fermi LAT Stacking Analysis of Swift Localized Gamma-ray Bursts

167   0   0.0 ( 0 )
 نشر من قبل Daniel Kocevski
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We perform a comprehensive stacking analysis of data collected by the Fermi Large Area Telescope (LAT) of gamma-ray bursts (GRB) localized by the Swift spacecraft, which were not detected by the LAT but which fell within the instruments field of view at the time of trigger. We examine a total of 79 GRBs by comparing the observed counts over a range of time intervals to that expected from designated background orbits, as well as by using a joint likelihood technique to model the expected distribution of stacked counts. We find strong evidence for subthreshold emission at MeV to GeV energies using both techniques. This observed excess is detected during intervals that include and exceed the durations typically characterizing the prompt emission observed at keV energies and lasts at least 2700 s after the co-aligned burst trigger. By utilizing a novel cumulative likelihood analysis, we find that although a bursts prompt gamma-ray and afterglow X-ray flux both correlate with the strength of the subthreshold emission, the X-ray afterglow flux measured by Swifts X-ray Telescope (XRT) at 11 hr post trigger correlates far more significantly. Overall, the extended nature of the subthreshold emission and its connection to the bursts afterglow brightness lend further support to the external forward shock origin of the late-time emission detected by the LAT. These results suggest that the extended high-energy emission observed by the LAT may be a relatively common feature but remains undetected in a majority of bursts owing to instrumental threshold effects.



قيم البحث

اقرأ أيضاً

189 - Nicola Omodei 2009
The Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope observatory is a pair conversion telescope sensitive to gamma-rays over more than four energy decades, between 20 MeV and more than 300 GeV. Acting in synergy with the Gamma-ray Bu rst Monitor (GBM) - the other instrument onboard the mission - the LAT features unprecedented sensitivity for the study of gamma-ray bursts (GRBs) in terms of spectral coverage, effective area, and instrumental dead time. We will review the main results from Fermi-LAT observation of GRB, presenting the main properties of GRBs at GeV energies.
The Fermi GBM catalog provides a large database with many measured variables that can be used to explore and verify gamma-ray burst classification results. We have used Principal Component Analysis and statistical clustering techniques to look for cl ustering in a sample of 801 gamma-ray bursts described by sixteen classification variables. The analysis recovers what appears to be the Short class and two long-duration classes that differ from one another via peak flux, with negligible variations in fluence, duration and spectral hardness. Neither class has properties entirely consistent with the Intermediate GRB class. Spectral hardness has been a critical Intermediate class property. Rather than providing spectral hardness, Fermi GBM provides a range of fitting variables for four different spectral models; it is not intuitive how these variables can be used to support or disprove previous GRB classification results.
We describe a long-term Swift monitoring program of Fermi gamma-ray sources, particularly the 23 gamma-ray sources of interest. We present a systematic analysis of the Swift X-ray Telescope light curves and hardness ratios of these sources, and we ca lculate excess variability. We present data for the time interval of 2004 December 22 through 2012 August 31. We describe the analysis methods used to produce these data products, and we discuss the availability of these data in an online repository, which continues to grow from more data on these sources and from a growing list of additional sources. This database should be of use to the broad astronomical community for long term studies of the variability of these objects and for inclusion in multi-wavelength studies.
Some Quantum Gravity (QG) theories allow for a violation of Lorentz invariance (LIV), manifesting as a dependence of the velocity of light in vacuum on its energy. If such a dependence exists, then photons of different energies emitted together by a distant source will arrive at the Earth at different times. High-energy (GeV) transient emissions from distant astrophysical sources such as Gamma-ray Bursts (GRBs) and Active Galaxy Nuclei can be used to search for and constrain LIV. The Fermi collaboration has previously analyzed two GRBs in order to put constraints on the dispersion parameter in vacuum, and on the energy scale at which QG effects causing LIV may arise. We used three different methods on four bright GRBs observed by the Fermi-LAT to get more stringent and robust constraints. No delays have been detected and strong limits on the QG energy scale are derived: for linear dispersion we set tight constraints placing the QG energy scale above the Planck mass; a quadratic leading LIV effect is also constrained.
The Fermi GBM Catalog has been recently published. Previous classification analyses of the BATSE, RHESSI, BeppoSAX, and Swift databases found three types of gamma-ray bursts. Now we analyzed the GBM catalog to classify the GRBs. PCA and Multiclusteri ng analysis revealed three groups. Validation of these groups, in terms of the observed variables, shows that one of the groups coincides with the short GRBs. The other two groups split the long class into a bright and dim part, as defined by the peak flux. Additional analysis is needed to determine whether this splitting is only a mathematical byproduct of the analysis or has some real physical meaning.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا