ﻻ يوجد ملخص باللغة العربية
We have briefly analyzed the existence of the pseudofermionic structure of multilevel pseudo-Hermitian systems with odd time-reversal and higher order involutive symmetries. We have shown that 2N-level Hamiltonians with N-order eigenvalue degeneracy can be represented in the oscillator-like form in terms of pseudofermionic creation and annihilation operators for both real and complex eigenvalues. The example of most general four-level traceless Hamiltonian with odd time-reversal symmetry, which is an extension of the SO(5) Hermitian Hamiltonian, is considered in greater and explicit detail.
In this paper we present a model exhibiting a new type of continuous-time quantum walk (as a quantum mechanical transport process) on networks, which is described by a non-Hermitian Hamiltonian possessing a real spectrum. We call it pseudo-Hermitian
We analyse here the pseudo-Hermitian Dynamical Casimir effect, proposing a non-Hermitian version of the effective Laws Hamiltonian used to describe the phenomenon. We verify that the average number of created photons can be substantially increased, a
We extend the definition of generalized parity $P$, charge-conjugation $C$ and time-reversal $T$ operators to nondiagonalizable pseudo-Hermitian Hamiltonians, and we use these generalized operators to describe the full set of symmetries of a pseudo-H
Information on quantum systems can be obtained only when they are open (or opened) in relation to a certain environment. As a matter of fact, realistic open quantum systems appear in very different shape. We sketch the theoretical description of open
A prepotential approach to constructing the quantum systems with dynamical symmetry is proposed. As applications, we derive generalizations of the hydrogen atom and harmonic oscillator, which can be regarded as the systems with position-dependent mas