ترغب بنشر مسار تعليمي؟ اضغط هنا

Searches for Sterile Neutrinos with the IceCube Detector

66   0   0.0 ( 0 )
 نشر من قبل IceCube Collaboration
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The IceCube neutrino telescope at the South Pole has measured the atmospheric muon neutrino spectrum as a function of zenith angle and energy in the approximate 320 GeV to 20 TeV range, to search for the oscillation signatures of light sterile neutrinos. No evidence for anomalous $ u_mu$ or $bar{ u}_mu$ disappearance is observed in either of two independently developed analyses, each using one year of atmospheric neutrino data. New exclusion limits are placed on the parameter space of the 3+1 model, in which muon antineutrinos would experience a strong MSW-resonant oscillation. The exclusion limits extend to $mathrm{sin}^2 2theta_{24} leq$ 0.02 at $Delta m^2 sim$ 0.3 $mathrm{eV}^2$ at the 90% confidence level. The allowed region from global analysis of appearance experiments, including LSND and MiniBooNE, is excluded at approximately the 99% confidence level for the global best fit value of $|$U$_{e4}|^2$.



قيم البحث

اقرأ أيضاً

The flavor composition of astrophysical neutrinos observed in neutrino telescopes is a powerful discriminator between different astrophysical neutrino production mechanisms and can also teach us about the particle physics properties of neutrinos. In this paper, we investigate how the possible existence of light sterile neutrinos can affect these flavor ratios. We consider two scenarios: (i) neutrino production in conventional astrophysical sources, followed by partial oscillation into sterile states; (ii) neutrinos from dark matter decay with a primary flavor composition enhanced in tau neutrinos or sterile neutrinos. Throughout the paper, we constrain the sterile neutrino mixing parameters from a full global fit to short and long baseline data. We present our results in the form of flavor triangles and, for scenario (ii), as exclusion limits on the dark matter mass and lifetime, derived from a fit to IceCube high energy starting events and through-going muons. We argue that identifying a possible flux of neutrinos from dark matter decay may require analyzing the flavor composition as a function of neutrino energy.
We report in detail on searches for eV-scale sterile neutrinos, in the context of a 3+1 model, using eight years of data from the IceCube neutrino telescope. By analyzing the reconstructed energies and zenith angles of 305,735 atmospheric $ u_mu$ and $bar{ u}_mu$ events we construct confidence intervals in two analysis spaces: $sin^2 (2theta_{24})$ vs. $Delta m^2_{41}$ under the conservative assumption $theta_{34}=0$; and $sin^2(2theta_{24})$ vs. $sin^2 (2theta_{34})$ given sufficiently large $Delta m^2_{41}$ that fast oscillation features are unresolvable. Detailed discussions of the event selection, systematic uncertainties, and fitting procedures are presented. No strong evidence for sterile neutrinos is found, and the best-fit likelihood is consistent with the no sterile neutrino hypothesis with a p-value of 8% in the first analysis space and 19% in the second.
87 - Mikhail Danilov 2018
For a long time there were 3 main experimental indications in favor of the existence of sterile neutrinos: $bar{ u_e}$ appearance in the $bar{ u_mu}$ beam in the LSND experiment, $bar{ u_e}$ flux deficit in comparison with theoretical expectations in reactor experiments, and $ u_e$ deficit in calibration runs with radioactive sources in the Ga solar neutrino experiments SAGE and GALEX. All three problems can be explained by the existence of sterile neutrinos with the mass square difference in the ballpark of $1~mathrm{eV^2}$. Recently the MiniBooNE collaboration observed electron (anti)neutrino appearance in the muon (anti)neutrino beams. The significance of the effect reaches 6.0$sigma$ level when combined with the LSND result. Even more recently the NEUTRINO-4 collaboration claimed the observation of $bar{ u_e}$ oscillations to sterile neutrinos with a significance slightly higher than 3$sigma$. If these results are confirmed, New Physics beyond the Standard Model would be required. More than 10 experiments are devoted to searches of sterile neutrinos. Six very short baseline reactor experiments are taking data just now. We review the present results and perspectives of these experiments.
We report results of a search for oscillations involving a light sterile neutrino over distances of 1.04 and $735,mathrm{km}$ in a $ u_{mu}$-dominated beam with a peak energy of $3,mathrm{GeV}$. The data, from an exposure of $10.56times 10^{20},textr m{protons on target}$, are analyzed using a phenomenological model with one sterile neutrino. We constrain the mixing parameters $theta_{24}$ and $Delta m^{2}_{41}$ and set limits on parameters of the four-dimensional Pontecorvo-Maki-Nakagawa-Sakata matrix, $|U_{mu 4}|^{2}$ and $|U_{tau 4}|^{2}$, under the assumption that mixing between $ u_{e}$ and $ u_{s}$ is negligible ($|U_{e4}|^{2}=0$). No evidence for $ u_{mu} to u_{s}$ transitions is found and we set a world-leading limit on $theta_{24}$ for values of $Delta m^{2}_{41} lesssim 1,mathrm{eV}^{2}$.
Neutrino physics is nowadays receiving more and more attention as a possible source of information for the long-standing problem of new physics beyond the Standard Model. The recent measurement of the mixing angle $theta_{13}$ in the standard mixing oscillation scenario encourages us to pursue the still missing results on leptonic CP violation and absolute neutrino masses. However, puzzling measurements exist that deserve an exhaustive evaluation. The NESSiE Collaboration has been setup to undertake conclusive experiments to clarify the muon-neutrino disappearance measurements at small $L/E$, which will be able to put severe constraints to models with more than the three-standard neutrinos, or even to robustly measure the presence of a new kind of neutrino oscillation for the first time. To this aim the use of the current FNAL-Booster neutrino beam for a Short-Baseline experiment has been carefully evaluated. Its recent proposal refers to the use of magnetic spectrometers at two different sites, Near and Far ones. Their positions have been extensively studied, together with the possible performances of two OPERA-like spectrometers. The proposal is constrained by availability of existing hardware and a time-schedule compatible with the undergoing project of a multi-site Liquid-Argon detectors at FNAL. The experiment to be possibly setup at Booster will allow to definitively clarify the current $ u_{mu}$ disappearance tension with $ u_{e}$ appearance and disappearance at the eV mass scale.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا