ﻻ يوجد ملخص باللغة العربية
We derive the first hard X-ray luminosity function (XLF) of stellar tidal disruption events (TDEs) by supermassive black holes (SMBHs), which gives an occurrence rate of TDEs per unit volume as a function of peak luminosity and redshift, utilizing an unbiased sample observed by the Monitor of All-sky X-ray Image (MAXI). On the basis of the light curves characterized by a power-law decay with an index of $-5/3$, a systematic search using the MAXI data in the first 37 months detected four TDEs, all of which have been found in the literature. To formulate the TDE XLF, we consider the mass function of SMBHs, that of disrupted stars, the specific TDE rate as a function of SMBH mass, and the fraction of TDEs with relativistic jets. We perform an unbinned maximum likelihood fit to the MAXI TDE list and check the consistency with the observed TDE rate in the ROSAT all sky survey. The results suggest that the intrinsic fraction of the jet-accompanying events is $0.0007$--$34%$. We confirm that at $z lesssim 1.5$ the contamination by TDEs to the hard X-ray luminosity functions of active galactic nuclei is not significant and hence that their contribution to the growth of SMBHs is negligible at the redshifts.
We present the first sample of TDEs discovered during the SRG all-sky survey. These 13 events were selected among X-ray transients detected on the 0<l<180 hemisphere by eROSITA during its second scan of the sky (10 June-14 Dec. 2020) and confirmed as
We construct a new X-ray (2--10 keV) luminosity function of Compton-thin active galactic nuclei (AGNs) in the local universe, using the first MAXI/GSC source catalog surveyed in the 4--10 keV band. The sample consists of 37 non-blazar AGNs at $z=0.00
We develop a new model for X-ray emission from tidal disruption events (TDEs), applying stationary general relativistic ``slim disk accretion solutions to supermassive black holes (SMBHs) and then ray-tracing the photon trajectories from the image pl
The discovery of jets from tidal disruption events (TDEs) rejuvenated the old field of relativistic jets powered by accretion onto supermassive black holes. In this Chapter, we first review the extensive multi-wavelength observations of jetted TDEs.
Tidal disruption events are an excellent probe for supermassive black holes in distant inactive galaxies because they show bright multi-wavelength flares lasting several months to years. AT2019dsg presents the first potential association with neutrino emission from such an explosive event.