ترغب بنشر مسار تعليمي؟ اضغط هنا

A Systematic Survey of Protoclusters at $zsim3mathrm{-}6$ in the CFHTLS Deep Fields

417   0   0.0 ( 0 )
 نشر من قبل Jun Toshikawa
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the discovery of three protoclusters at $zsim3mathrm{-}4$ with spectroscopic confirmation in the Canada-France-Hawaii Telescope (CFHT) Legacy Survey Deep Fields. In these fields, we investigate the large-scale projected sky distribution of $zsim3mathrm{-}6$ Lyman break galaxies and identify 21 protocluster candidates from regions that are overdense at more than $4sigma$ overdensity significance. Based on cosmological simulations, it is expected that more than $76%$ of these candidates will evolve into a galaxy cluster of at least a halo mass of $10^{14},mathrm{M_odot}$ at $z=0$. We perform follow-up spectroscopy for eight of the candidates using Subaru/FOCAS, KeckII/DEIMOS, and Gemini-N/GMOS. In total we target 462 dropout candidates and obtain 138 spectroscopic redshifts. We confirm three real protoclusters at $z=3mathrm{-}4$ with more than five members spectroscopically identified, and find one to be an incidental overdense region by mere chance alignment. The other four candidate regions at $zsim5mathrm{-}6$ require more spectroscopic follow-up in order to be conclusive. A $z=3.67$ protocluster, which has eleven spectroscopically confirmed members, shows a remarkable core-like structure composed of a central small region ($<0.5,mathrm{physical>Mpc}$) and an outskirts region ($sim1.0,mathrm{physical>Mpc}$). The Ly$alpha$ equivalent widths of members of the protocluster are significantly smaller than those of field galaxies at the same redshift while there is no difference in the UV luminosity distributions. These results imply that some environmental effects start operating as early as at $zsim4$ along with the growth of the protocluster structure.



قيم البحث

اقرأ أيضاً

The IRAC mapping of the NMBS-II fields program is an imaging survey at 3.6 and 4.5$mu$m with the Spitzer Infrared Array Camera (IRAC). The observations cover three Canada-France-Hawaii Telescope Legacy Survey Deep (CFHTLS-D) fields, including one als o imaged by AEGIS, and two MUSYC fields. These are then combined with archival data from all previous programs into deep mosaics. The resulting imaging covers a combined area of about 3 $deg^2$, with at least $sim$2 hr integration time for each field. In this work, we present our data reduction techniques and document the resulting coverage maps at 3.6 and 4.5$mu$m. All of the images are W-registered to the reference image, which is either the z-band stack image of the 25% best seeing images from the CFHTLS-D for CFHTLS-D1, CFHTLS-D3, and CFHTLS-D4, or the K-band images obtained at the Blanco 4-m telescope at CTIO for MUSYC1030 and MUSYC1255. We make all images and coverage maps described herein publicly available via the Spitzer Science Center.
The Frontier Fields project is an observational campaign targeting six galaxy clusters, with the intention of using the magnification provided by gravitational lensing to study galaxies that are extremely faint or distant. We used the Karl G. Jansky Very Large Array (VLA) at 3 and 6 GHz to observe three Frontier Fields: MACSJ0416.1$-$2403 ($z$ = 0.396), MACSJ0717.5+3745 ($z$ = 0.545), and MACSJ1149.5+2223 ($z$ = 0.543). The images reach noise levels of $sim$1 $mu$Jy beam$^{-1}$ with sub-arcsecond resolution ($sim$2.5 kpc at $z$ = 3), providing a high-resolution view of high-$z$ star-forming galaxies that is unbiased by dust obscuration. We generate dual-frequency continuum images at two different resolutions per band, per cluster, and derive catalogs totalling 1966 compact radio sources. Components within the areas of Hubble Space Telescope and Subaru observations are cross-matched, providing host galaxy identifications for 1296 of them. We detect 13 moderately-lensed (2.1 $<$ $mu$ $<$ 6.5) sources, one of which has a demagnified peak brightness of 0.9 $mu$Jy beam$^{-1}$, making it a candidate for the faintest radio source ever detected. There are 66 radio sources exhibiting complex morphologies, and 58 of these have host galaxy identifications. We reveal that MACSJ1149.5+2223 is not a cluster with a double relic, as the western candidate relic is resolved as a double-lobed radio galaxy associated with a foreground elliptical at $z$ = 0.24. The VLA Frontier Fields project is a public legacy survey. The image and catalog products from this work are freely available.
204 - R. Bielby 2011
We present a new near-infrared imaging survey in the four CFHTLS deep fields: the WIRCam Deep Survey (WIRDS). WIRDS comprises extremely deep, high quality (FWHM ~0.6) J, H and K imaging covering a total effective area of 2.1 deg^2 and reaching AB 50% completeness limits of ~24.5. We combine our images with the CFHTLS to create a unique eight-band ugrizJHK photometric catalogues in the CFHTLS deep fields; these four separate fields allow us to make a robust estimate of the effect of cosmic variance for all our measurements. We use these catalogues to estimate precise photometric redshifts, galaxy types and stellar masses for a unique sample of ~1.8 million galaxies. Our JHK number counts are consistent with previous studies. We apply the BzK selection to our gzK filter set and find that the star forming BzK selection successfully selects 76% of star-forming galaxies in the redshift range 1.4<z<2.5 in our photometric catalogue. The passive BzK selection returns 52% of the passive 1.4<z<2.5 population identified in the photometric catalogue. We present the galaxy stellar mass function as a function of redshift up to z=2 and present fits using double Schechter functions. A mass-dependent evolution of the mass function is seen with the numbers of galaxies with masses of log(M)<10.75 still evolving at z<1, but galaxies of higher mass reaching their present day numbers by z~0.8-1. This is consistent with the present picture of downsizing in galaxy evolution. We compare our results with the predictions of the GALFORM semi-analytical galaxy formation model and find that the simulations provide a relatively successful fit to the observed mass functions at intermediate masses (i.e. 10<log(M)<11). However, the GALFORM results under-predict the mass function at low masses, whilst the fit as a whole degrades beyond redshifts of z~1.2.
69 - P. Ciliegi 2002
We have obtained a deep radio image with the Very Large Array at 6 cm in the Lockman Hole. The noise level in the central part of the field is about 11 microJy. From these data we have extracted a catalogue of 63 radio sources. The analysis of the ra dio spectral index suggests a flattening of the average radio spectra and an increase of the population of flat spectrum radio sources in the faintest flux bin. Cross correlation with the ROSAT/XMM X-ray sources list yields 13 reliable radio/X-ray associations, corresponding to about 21 per cent of the radio sample. Most of these associations (8 out of 13) are classified as Type II AGN. Using optical CCD (V and I) and K band data we found an optical identification for 58 of the 63 radio sources. This corresponds to an identification rate of about 92 per cent, one of the highest percentages so far available. From the analysis of the colour-colour diagram and of the radio flux - optical magnitude diagram we have been able to select a subsample of radio sources whose optical counterparts are likely to be high redshift (z>0.5) early-type galaxies, hosting an Active Galactic Nucleus responsible of the radio activity. We also find evidence that at these faint radio limits a large fraction (about 60 per cent) of the faintest optical counterparts (i.e. sources in the magnitude range 22.5<I<24.5 mag) of the radio sources are Extremely Red Objects (EROs) with I-K>4.
If the Universe is dominated by cold dark matter and dark energy as in the currently popular LCDM cosmology, it is expected that large scale structures form gradually, with galaxy clusters of mass M > ~10^14 Msun appearing at around 6 Gyrs after the Big Bang (z ~ 1). Here, we report the discovery of 59 massive structures of galaxies with masses greater than a few x 10^13 Msun at redshifts between z=0.6 and 4.5 in the Great Observatories Origins Deep Survey fields. The massive structures are identified by running top-hat filters on the two dimensional spatial distribution of magnitude-limited samples of galaxies using a combination of spectroscopic and photometric redshifts. We analyze the Millennium simulation data in a similar way to the analysis of the observational data in order to test the LCDM cosmology. We find that there are too many massive structures (M > 7 x 10^13 Msun) observed at z > 2 in comparison with the simulation predictions by a factor of a few, giving a probability of < 1/2500 of the observed data being consistent with the simulation. Our result suggests that massive structures have emerged early, but the reason for the discrepancy with the simulation is unclear. It could be due to the limitation of the simulation such as the lack of key, unrecognized ingredients (strong non-Gaussianity or other baryonic physics), or simply a difficulty in the halo mass estimation from observation, or a fundamental problem of the LCDM cosmology. On the other hand, the over-abundance of massive structures at high redshifts does not favor heavy neutrino mass of ~ 0.3 eV or larger, as heavy neutrinos make the discrepancy between the observation and the simulation more pronounced by a factor of 3 or more.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا