ﻻ يوجد ملخص باللغة العربية
We present the discovery of three protoclusters at $zsim3mathrm{-}4$ with spectroscopic confirmation in the Canada-France-Hawaii Telescope (CFHT) Legacy Survey Deep Fields. In these fields, we investigate the large-scale projected sky distribution of $zsim3mathrm{-}6$ Lyman break galaxies and identify 21 protocluster candidates from regions that are overdense at more than $4sigma$ overdensity significance. Based on cosmological simulations, it is expected that more than $76%$ of these candidates will evolve into a galaxy cluster of at least a halo mass of $10^{14},mathrm{M_odot}$ at $z=0$. We perform follow-up spectroscopy for eight of the candidates using Subaru/FOCAS, KeckII/DEIMOS, and Gemini-N/GMOS. In total we target 462 dropout candidates and obtain 138 spectroscopic redshifts. We confirm three real protoclusters at $z=3mathrm{-}4$ with more than five members spectroscopically identified, and find one to be an incidental overdense region by mere chance alignment. The other four candidate regions at $zsim5mathrm{-}6$ require more spectroscopic follow-up in order to be conclusive. A $z=3.67$ protocluster, which has eleven spectroscopically confirmed members, shows a remarkable core-like structure composed of a central small region ($<0.5,mathrm{physical>Mpc}$) and an outskirts region ($sim1.0,mathrm{physical>Mpc}$). The Ly$alpha$ equivalent widths of members of the protocluster are significantly smaller than those of field galaxies at the same redshift while there is no difference in the UV luminosity distributions. These results imply that some environmental effects start operating as early as at $zsim4$ along with the growth of the protocluster structure.
The IRAC mapping of the NMBS-II fields program is an imaging survey at 3.6 and 4.5$mu$m with the Spitzer Infrared Array Camera (IRAC). The observations cover three Canada-France-Hawaii Telescope Legacy Survey Deep (CFHTLS-D) fields, including one als
The Frontier Fields project is an observational campaign targeting six galaxy clusters, with the intention of using the magnification provided by gravitational lensing to study galaxies that are extremely faint or distant. We used the Karl G. Jansky
We present a new near-infrared imaging survey in the four CFHTLS deep fields: the WIRCam Deep Survey (WIRDS). WIRDS comprises extremely deep, high quality (FWHM ~0.6) J, H and K imaging covering a total effective area of 2.1 deg^2 and reaching AB 50%
We have obtained a deep radio image with the Very Large Array at 6 cm in the Lockman Hole. The noise level in the central part of the field is about 11 microJy. From these data we have extracted a catalogue of 63 radio sources. The analysis of the ra
If the Universe is dominated by cold dark matter and dark energy as in the currently popular LCDM cosmology, it is expected that large scale structures form gradually, with galaxy clusters of mass M > ~10^14 Msun appearing at around 6 Gyrs after the