ترغب بنشر مسار تعليمي؟ اضغط هنا

Klein-four connections and the Casson invariant for non-trivial admissible $U(2)$ bundles

122   0   0.0 ( 0 )
 نشر من قبل Christopher Scaduto
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Given a rank 2 hermitian bundle over a 3-manifold that is non-trivial admissible in the sense of Floer, one defines its Casson invariant as half the signed count of its projectively flat connections, suitably perturbed. We show that the 2-divisibility of this integer invariant is controlled in part by a formula involving the mod 2 cohomology ring of the 3-manifold. This formula counts flat connections on the induced adjoint bundle with Klein-four holonomy.



قيم البحث

اقرأ أيضاً

128 - J. Scott Carter 2012
By 2-twist-spinning the knotted graph that represents the knotted handlebody $5_2$, we obtain a knotted foam in 4-dimensional space with a non-trivial quandle cocycle invariant.
We bound the value of the Casson invariant of any integral homology 3-sphere $M$ by a constant times the distance-squared to the identity, measured in any word metric on the Torelli group $T$, of the element of $T$ associated to any Heegaard splittin g of $M$. We construct examples which show this bound is asymptotically sharp.
We show that the SU(3) Casson invariant for spliced sums along certain torus knots equals 16 times the product of their SU(2) Casson knot invariants. The key step is a splitting formula for su(n) spectral flow for closed 3-manifolds split along a torus.
Over a smooth and proper complex scheme, the differential Galois group of an integrable connection may be obtained as the closure of the transcendental monodromy representation. In this paper, we employ a completely algebraic variation of this idea b y restricting attention to connections on trivial vector bundles and replacing the fundamental group by a certain Lie algebra constructed from the regular forms. In more detail, we show that the differential Galois group is a certain ``closure of the aforementioned Lie algebra. This is then applied to construct connections on curves with prescribed differential Galois group.
81 - Tetsuya Ito 2021
We give a rational surgery formula for the Casson-Walker invariant of a 2-component link in $S^{3}$ which is a generalization of Matveev-Polyaks formula. As application, we give more examples of non-hyperbolic L-space $M$ such that knots in $M$ are d etermined by their complements. We also apply the result for the cosmetic crossing conjecture.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا