ترغب بنشر مسار تعليمي؟ اضغط هنا

First Principles Prediction of Amorphous Phases Using Evolutionary Algorithms

167   0   0.0 ( 0 )
 نشر من قبل Suhas Nahas
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss the efficacy of evolutionary method for the purpose of structural analysis of amorphous solids. At present ab initio molecular dynamics (MD) based melt-quench technique is used and this deterministic approach has proven to be successful to study amorphous materials. We show that a stochastic approach motivated by Darwinian evolution can also be used to simulate amorphous structures. Applying this method, in conjunction with density functional theory (DFT) based electronic, ionic and cell relaxation, we re-investigate two well known amorphous semiconductors, namely silicon and indium gallium zinc oxide (IGZO). We find that characteristic structural parameters like average bond length and bond angle are within $sim$ 2% to those reported by ab initio MD calculations and experimental studies.



قيم البحث

اقرأ أيضاً

164 - A.R. Oganov , C.W. Glass 2009
We have developed an efficient and reliable methodology for crystal structure prediction, merging ab initio total-energy calculations and a specifically devised evolutionary algorithm. This method allows one to predict the most stable crystal structu re and a number of low-energy metastable structures for a given compound at any P-T conditions without requiring any experimental input. Extremely high success rate has been observed in a few tens of tests done so far, including ionic, covalent, metallic, and molecular structures with up to 40 atoms in the unit cell. We have been able to resolve some important problems in high-pressure crystallography and report a number of new high-pressure crystal structures. Physical reasons for the success of this methodology are discussed.
218 - A.R. Oganov , Y. Ma , A.O. Lyakhov 2010
Prediction of stable crystal structures at given pressure-temperature conditions, based only on the knowledge of the chemical composition, is a central problem of condensed matter physics. This extremely challenging problem is often termed crystal st ructure prediction problem, and recently developed evolutionary algorithm USPEX (Universal Structure Predictor: Evolutionary Xtallography) made an important progress in solving it, enabling efficient and reliable prediction of structures with up to ~40 atoms in the unit cell using ab initio methods. Here we review this methodology, as well as recent progress in analyzing energy landscape of solids (which also helps to analyze results of USPEX runs). We show several recent applications - (1) prediction of new high-pressure phases of CaCO3, (2) search for the structure of the polymeric phase of CO2 (phase V), (3) high-pressure phases of oxygen, (4) exploration of possible stable compounds in the Xe-C system at high pressures, (5) exotic high-pressure phases of elements boron and sodium.
The phase diagram of the Al-Li system was determined by means of first principles calculations in combination with the cluster expansion formalism and statistical mechanics. The ground state phases were determined from first principles calculations o f fcc and bcc configurations in the whole compositional range while the phase transitions as a function of temperature were ascertained from the thermodynamic grand potential and the Gibbs free energies of the phases. Overall, the calculated phase diagram was in good agreement with the currently accepted experimental phase diagram but the simulations provided new insights that are important to optimize microstructure of these alloys by means of heat treatments. In particular, the structure of the potential GP zones, made up of Al0.5Li0.5 (001) monolayers embedded in Al matrix, was identified. It was found that Al3Li is a stable phase although the energy barrier for the transformation of Al3Li into AlLi is very small (a few meV) and can be overcome by thermal vibrations. Moreover, bcc AlLi was found to be formed by martensitic transformation of fcc configurations and Al3Li precipitates stand for favorable sites for the nucleation of AlLi because they contain the basic blocks of such fcc ordering. Finally, polynomial expressions of the Gibbs free energies of the different phases as a function of temperature and composition were given, so they can be used in mesoscale simulations of precipitation in Al-Li alloys.
The structural, elastic and electronic properties of ReN are investigated by first-principles calculations based on density functional theory. Two competing structures, i.e., CsCl-like and NiAs-like structures, are found and the most stable structure , NiAs-like, has a hexagonal symmetry which belongs to space group P63/mmc with a=2.7472 and c=5.8180 AA. ReN with hexagonal symmetry is a metal ultra-incompressible solid and has less elastic anisotropy. The ultra-incompressibility of ReN is attributed to its high valence electron density and strong covalence bondings. Calculations of density of states and charge density distribution, together with Mulliken atomic population analysis, show that the bondings of ReN should be a mixture of metallic, covalent, and ionic bondings. Our results indicate that ReN can be used as a potential ultra-incompressible conductor. In particular, we obtain a superconducting transition temperature T$_c$=4.8 K for ReN.
The band offsets between crystalline and hydrogenated amorphous silicon (a-Si:H) are key parameters governing the charge transport in modern silicon hetrojunction solar cells. They are an important input for macroscopic simulators that are used to fu rther optimize the solar cell. Past experimental studies, using X-ray photoelectron spectroscopy (XPS) and capacitance-voltage measurements, have yielded conflicting results on the band offset. Here we present a computational study on the band offsets. It is based on atomistic models and density-functional theory (DFT). The amorphous part of the interface is obtained by relatively long DFT first-principles molecular-dynamics (MD) runs at an elevated temperature on 30 statistically independent samples. In order to obtain a realistic conduction band position the electronic structure of the interface is calculated with a hybrid functional. We find a slight asymmetry in the band offsets, where the offset in the valence band (0.30 eV) is larger than in the conduction band (0.17 eV). Our results are in agreement with the latest XPS measurements that report a valence band offset of 0.3 eV [M. Liebhaber et al., Appl. Phys. Lett. 106, 031601 (2015)].
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا