ترغب بنشر مسار تعليمي؟ اضغط هنا

Stochastic parameterization of subgrid-scale processes in coupled ocean-atmosphere systems: Benefits and limitations of response theory

89   0   0.0 ( 0 )
 نشر من قبل Jonathan Demaeyer
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A stochastic subgrid-scale parameterization based on the Ruelles response theory and proposed in Wouters and Lucarini [2012] is tested in the context of a low-order coupled ocean-atmosphere model for which a part of the atmospheric modes are considered as unresolved. A natural separation of the phase-space into an invariant set and its complement allows for an analytical derivation of the different terms involved in the parameterization, namely the average, the fluctuation and the long memory terms. In this case, the fluctuation term is an additive stochastic noise. Its application to the low-order system reveals that a considerable correction of the low-frequency variability along the invariant subset can be obtained, provided that the coupling is sufficiently weak. This new approach of scale separation opens new avenues of subgrid-scale parameterizations in multiscale systems used for climate forecasts.



قيم البحث

اقرأ أيضاً

A new framework is proposed for the evaluation of stochastic subgrid-scale parameterizations in the context of MAOOAM, a coupled ocean-atmosphere model of intermediate complexity. Two physically-based parameterizations are investigated, the first one based on the singular perturbation of Markov operator, also known as homogenization. The second one is a recently proposed parameterization based on the Ruelles response theory. The two parameterization are implemented in a rigorous way, assuming however that the unresolved scale relevant statistics are Gaussian. They are extensively tested for a low-order version known to exhibit low-frequency variability, and some preliminary results are obtained for an intermediate-order version. Several different configurations of the resolved-unresolved scale separations are then considered. Both parameterizations show remarkable performances in correcting the impact of model errors, being even able to change the modality of the probability distributions. Their respective limitations are also discussed.
We review some recent methods of subgrid-scale parameterization used in the context of climate modeling. These methods are developed to take into account (subgrid) processes playing an important role in the correct representation of the atmospheric a nd climate variability. We illustrate these methods on a simple stochastic triad system relevant for the atmospheric and climate dynamics, and we show in particular that the stability properties of the underlying dynamics of the subgrid processes has a considerable impact on their performances.
The predictability of the atmosphere at short and long time scales, associated with the coupling to the ocean, is explored in a new version of the Modular Arbitrary-Order Ocean-Atmosphere Model (MAOOAM), based on a 2-layer quasi-geostrophic atmospher e and a 1-layer reduced-gravity quasi-geostrophic ocean. This version features a new ocean basin geometry with periodic boundary conditions in the zonal direction. The analysis presented in this paper considers a low-order version of the model with 40 dynamical variables. First the increase of surface friction (and the associated heat flux) with the ocean can either induce chaos when the aspect ratio between the meridional and zonal directions of the domain of integration is small, or suppress chaos when it is large. This reflects the potentially counter-intuitive role that the ocean can play in the coupled dynamics. Second, and perhaps more importantly, the emergence of long-term predictability within the atmosphere for specific values of the friction coefficient occurs through intermittent excursions in the vicinity of a (long-period) unstable periodic solution. Once close to this solution the system is predictable for long times, i.e. a few years. The intermittent transition close to this orbit is, however, erratic and probably hard to predict. This new route to long-term predictability contrasts with the one found in the closed ocean-basin low-order version of MAOOAM, in which the chaotic solution is permanently wandering in the vicinity of an unstable periodic orbit for specific values of the friction coefficient. The model solution is thus at any time influenced by the unstable periodic orbit and inherits from its long-term predictability.
Global climate models represent small-scale processes such as clouds and convection using quasi-empirical models known as parameterizations, and these parameterizations are a leading cause of uncertainty in climate projections. A promising alternativ e approach is to use machine learning to build new parameterizations directly from high-resolution model output. However, parameterizations learned from three-dimensional model output have not yet been successfully used for simulations of climate. Here we use a random forest to learn a parameterization of subgrid processes from output of a three-dimensional high-resolution atmospheric model. Integrating this parameterization into the atmospheric model leads to stable simulations at coarse resolution that replicate the climate of the high-resolution simulation. The parameterization obeys physical constraints and captures important statistics such as precipitation extremes. The ability to learn from a fully three-dimensional simulation presents an opportunity for learning parameterizations from the wide range of global high-resolution simulations that are now emerging.
One the major factors determining the development and evolution of atmospheric convection is the sea surface temperature and its variability. Results of this thesis show that state of atmospheric convection impacts the diurnal distribution of thermal energy in the upper ocean. Under calm and clear sky conditions a shallow warm layer of several meters depth develops on the surface of the ocean. This warm layer drives an anomalous flux from the ocean to the atmosphere. A novel Kelvin wave trajectory database based on satellite data is introduced in this study. The investigation of its data shows that substantial fraction of Kelvin waves is initiated as a result of interaction with another Kelvin wave. Two distinct categories are defined and analyzed: the two- and multiple Kelvin wave initiations, and a spin off initiation. Results show that primary forcing of such waves are high diurnal cycle and/or increased wind speed and latent heat flux at the ocean surface. Variability of the ocean surface and subsurface along Kelvin wave trajectories over Indian Ocean is investigated: wind speed and latent heat flux increase and a sea surface temperature anomaly decreases during a wave passage. It is also shown that Kelvin waves are longitude-diurnal cycle phase locked over the Maritime Continent. This cycle phase locking is such that it agrees with mean, local diurnal cycle of convection in the atmosphere. The strength of the longitude-diurnal cycle phase locking differs between non-blocked Kelvin waves, which make successful transition over the Maritime Continent, and blocked waves that terminate within it. The distance between the islands of Sumatra and Borneo agrees with the distance travelled by an average Kelvin wave in one day. This suggests that the Maritime Continent may act as a filter, favoring successful propagation waves, which are in phase with the local diurnal cycle of convection.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا