ﻻ يوجد ملخص باللغة العربية
Motivated by the paper by D. Gerard-Varet and E. Dormy [JAMS, 2010] about the linear ill-posedness for the Prandtl equations around a shear flow with exponential decay in normal variable, and the recent study of well-posedness on the Prandtl equations in Sobolev spaces, this paper aims to extend the result in cite{GV-D} to the case when the shear flow has general decay. The key observation is to construct an approximate solution that captures the initial layer to the linearized problem motivated by the precise formulation of solutions to the inviscid Prandtl equations.
In this paper, we give an instability criterion for the Prandtl equations in three space variables, which shows that the monotonicity condition of tangential velocity fields is not sufficient for the well-posedness of the three dimensional Prandtl eq
In the paper, by constructing a initial data $u_{0}in B^{sigma}_{p,infty}$ with $sigma-2>max{1+frac 1 p, frac 3 2}$, we prove that the corresponding solution to the higher dimensional Camassa-Holm equations starting from $u_{0}$ is discontinuous at $
We construct solutions in $mathbb{R}^2$ with finite energy of the surface quasi-geostrophic equations (SQG) that initially are in $C^k$ ($kgeq 2$) but that are not in $C^{k}$ for $t>0$. We prove a similar result also for $H^{s}$ in the range $sin(fra
We prove that the Cauchy problem for the dispersion generalized Benjamin-Ono equation [partial_t u+|partial_x|^{1+alpha}partial_x u+uu_x=0, u(x,0)=u_0(x),] is locally well-posed in the Sobolev spaces $H^s$ for $s>1-alpha$ if $0leq alpha leq 1$. The n
In this article we present ill-posedness results for generalized Boussinesq equations, which incorporate also the ones obtained by the authors for the classical good Boussinesq equation (arXiv:1202.6671). More precisely, we show that the associated f