ﻻ يوجد ملخص باللغة العربية
We describe the closure of the strata of abelian differentials with prescribed type of zeros and poles, in the projectivized Hodge bundle over the Deligne-Mumford moduli space of stable curves with marked points. We provide an explicit characterization of pointed stable differentials in the boundary of the closure, both a complex analytic proof and a flat geometric proof for smoothing the boundary differentials, and numerous examples. The main new ingredient in our description is a global residue condition arising from a full order on the dual graph of a stable curve.
A $k$-differential on a Riemann surface is a section of the $k$-th power of the canonical line bundle. Loci of $k$-differentials with prescribed number and multiplicities of zeros and poles form a natural stratification of the moduli space of $k$-dif
For a linear subvariety $M$ of a stratum of meromorphic differentials, we investigate its closure in the multi-scale compactification constructed by Bainbridge-Chen-Gendron-Grushevsky-Moller. We prove various restrictions on the type of defining line
An increasingly important area of interest for mathematicians is the study of Abelian differentials. This growing interest can be attributed to the interdisciplinary role this subject plays in modern mathematics, as various problems of algebraic geom
We construct a compactification of the moduli spaces of abelian differentials on Riemann surfaces with prescribed zeroes and poles. This compactification, called the moduli space of multi-scale differentials, is a complex orbifold with normal crossin
We state conjectures on the asymptotic behavior of the volumes of moduli spaces of Abelian differentials and their Siegel-Veech constants as genus tends to infinity. We provide certain numerical evidence, describe recent advances and the state of the art towards proving these conjectures.