ﻻ يوجد ملخص باللغة العربية
Exploring small connected and induced subgraph patterns (CIS patterns, or graphlets) has recently attracted considerable attention. Despite recent efforts on computing the number of instances a specific graphlet appears in a large graph (i.e., the total number of CISes isomorphic to the graphlet), little attention has been paid to characterizing a nodes graphlet degree, i.e., the number of CISes isomorphic to the graphlet that include the node, which is an important metric for analyzing complex networks such as social and biological networks. Similar to global graphlet counting, it is challenging to compute node graphlet degrees for a large graph due to the combinatorial nature of the problem. Unfortunately, previous methods of computing global graphlet counts are not suited to solve this problem. In this paper we propose sampling methods to estimate node graphlet degrees for undirected and directed graphs, and analyze the error of our estimates. To the best of our knowledge, we are the first to study this problem and give a fast scalable solution. We conduct experiments on a variety of real-word datasets that demonstrate that our methods accurately and efficiently estimate node graphlet degrees for graphs with millions of edges.
Let $D$ be a strongly connected digraph. The average distance $bar{sigma}(v)$ of a vertex $v$ of $D$ is the arithmetic mean of the distances from $v$ to all other vertices of $D$. The remoteness $rho(D)$ and proximity $pi(D)$ of $D$ are the maximum a
Estimating distributions of node characteristics (labels) such as number of connections or citizenship of users in a social network via edge and node sampling is a vital part of the study of complex networks. Due to its low cost, sampling via a rando
Many real-world networks are intrinsically directed. Such networks include activation of genes, hyperlinks on the internet, and the network of followers on Twitter among many others. The challenge, however, is to create a network model that has many
Graphs are used to model interactions in a variety of contexts, and there is a growing need to quickly assess the structure of such graphs. Some of the most useful graph metrics are based on triangles, such as those measuring social cohesion. Algorit
The shortest-path, commute time, and diffusion distances on undirected graphs have been widely employed in applications such as dimensionality reduction, link prediction, and trip planning. Increasingly, there is interest in using asymmetric structur