ترغب بنشر مسار تعليمي؟ اضغط هنا

Host-Galaxy Properties of 32 Low-Redshift Superluminous Supernovae from the Palomar Transient Factory

81   0   0.0 ( 0 )
 نشر من قبل Daniel Perley
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present ultraviolet through near-infrared photometry and spectroscopy of the host galaxies of all superluminous supernovae (SLSNe) discovered by the Palomar Transient Factory prior to 2013, and derive measurements of their luminosities, star-formation rates, stellar masses, and gas-phase metallicities. We find that Type I (hydrogen-poor) SLSNe are found almost exclusively in low-mass (M < 2x10^9 M_sun) and metal-poor (12+log[O/H] < 8.4) galaxies. We compare the mass and metallicity distributions of our sample to nearby galaxy catalogs in detail and conclude that the rate of SLSNe-I as a fraction of all SNe is heavily suppressed in galaxies with metallicities >0.5 Z_sun. Extremely low metallicities are not required, and indeed provide no further increase in the relative SLSN rate. Several SLSN-I hosts are undergoing vigorous starbursts, but this may simply be a side effect of metallicity dependence: dwarf galaxies tend to have bursty star-formation histories. Type-II (hydrogen-rich) SLSNe are found over the entire range of galaxy masses and metallicities, and their integrated properties do not suggest a strong preference for (or against) low-mass/low-metallicity galaxies. Two hosts exhibit unusual properties: PTF 10uhf is a Type I SLSN in a massive, luminous infrared galaxy at redshift z=0.29, while PTF 10tpz is a Type II SLSN located in the nucleus of an early-type host at z=0.04.



قيم البحث

اقرأ أيضاً

We investigate the light-curve properties of a sample of 26 spectroscopically confirmed hydrogen-poor superluminous supernovae (SLSNe-I) in the Palomar Transient Factory (PTF) survey. These events are brighter than SNe Ib/c and SNe Ic-BL, on average, by about 4 and 2~mag, respectively. The peak absolute magnitudes of SLSNe-I in rest-frame $g$ band span $-22lesssim M_g lesssim-20$~mag, and these peaks are not powered by radioactive $^{56}$Ni, unless strong asymmetries are at play. The rise timescales are longer for SLSNe than for normal SNe Ib/c, by roughly 10 days, for events with similar decay times. Thus, SLSNe-I can be considered as a separate population based on photometric properties. After peak, SLSNe-I decay with a wide range of slopes, with no obvious gap between rapidly declining and slowly declining events. The latter events show more irregularities (bumps) in the light curves at all times. At late times, the SLSN-I light curves slow down and cluster around the $^{56}$Co radioactive decay rate. Powering the late-time light curves with radioactive decay would require between 1 and 10${rm M}_odot$ of Ni masses. Alternatively, a simple magnetar model can reasonably fit the majority of SLSNe-I light curves, with four exceptions, and can mimic the radioactive decay of $^{56}$Co, up to $sim400$ days from explosion. The resulting spin values do not correlate with the host-galaxy metallicities. Finally, the analysis of our sample cannot strengthen the case for using SLSNe-I for cosmology.
We present an investigation of the optical spectra of 264 low-redshift (z < 0.2) Type Ia supernovae (SNe Ia) discovered by the Palomar Transient Factory, an untargeted transient survey. We focus on velocity and pseudo-equivalent width measurements of the Si II 4130, 5972, and 6355 A lines, as well those of the Ca II near-infrared (NIR) triplet, up to +5 days relative to the SN B-band maximum light. We find that a high-velocity component of the Ca II NIR triplet is needed to explain the spectrum in ~95 per cent of SNe Ia observed before -5 days, decreasing to ~80 per cent at maximum. The average velocity of the Ca II high-velocity component is ~8500 km/s higher than the photospheric component. We confirm previous results that SNe Ia around maximum light with a larger contribution from the high-velocity component relative to the photospheric component in their Ca II NIR feature have, on average, broader light curves and lower Ca II NIR photospheric velocities. We find that these relations are driven by both a stronger high-velocity component and a weaker contribution from the photospheric Ca II NIR component in broader light curve SNe Ia. We identify the presence of C II in very-early-time SN Ia spectra (before -10 days), finding that >40 per cent of SNe Ia observed at these phases show signs of unburnt material in their spectra, and that C II features are more likely to be found in SNe Ia having narrower light curves.
Unlike the ordinary supernovae (SNe) some of which are hydrogen and helium deficient (called Type Ic SNe), broad-lined Type Ic SNe (SNe Ic-bl) are very energetic events, and all SNe coincident with bona fide long duration gamma-ray bursts (LGRBs) are of Type Ic-bl. Understanding the progenitors and the mechanism driving SN Ic-bl explosions vs those of their SNe Ic cousins is key to understanding the SN-GRB relationship and jet production in massive stars. Here we present the largest set of host-galaxy spectra of 28 SNe Ic and 14 SN Ic-bl, all discovered before 2013 by the same untargeted survey, namely the Palomar Transient Factory (PTF). We carefully measure their gas-phase metallicities, stellar masses (M*s) and star-formation rates (SFRs) by taking into account recent progress in the metallicity field and propagating uncertainties correctly. We further re-analyze the hosts of 10 literature SN-GRBs using the same methods and compare them to our PTF SN hosts with the goal of constraining their progenitors from their local environments by conducting a thorough statistical comparison, including upper limits. We find that the metallicities, SFRs and M*s of our PTF SN Ic-bl hosts are statistically comparable to those of SN-GRBs, but significantly lower than those of the PTF SNe Ic. The mass-metallicity relations as defined by the SNe Ic-bl and SN-GRBs are not significantly different from the same relations as defined by the SDSS galaxies, in contrast to claims by earlier works. Our findings point towards low metallicity as a crucial ingredient for SN Ic-bl and SN-GRB production since we are able to break the degeneracy between high SFR and low metallicity. We suggest that the PTF SNe Ic-bl may have produced jets that were choked inside the star or were able break out of the star as unseen low-luminosity or off-axis GRBs.
137 - Lin Yan 2017
We present observations of two new hydrogen-poor superluminous supernovae (SLSN-I), iPTF15esb and iPTF16bad, showing late-time H-alpha emission with line luminosities of (1-3)e+41 erg/s and velocity widths of (4000-6000) km/s. Including the previousl y published iPTF13ehe, this makes up a total of three such events to date. iPTF13ehe is one of the most luminous and the slowest evolving SLSNe-I, whereas the other two are less luminous and fast decliners. We interpret this as a result of the ejecta running into a neutral H-shell located at a radius of ~ 1.0e+16cm. This implies that violent mass loss must have occurred several decades before the supernova explosion. Such a short time interval suggests that eruptive mass loss could be common shortly prior to the death of a massive star as a SLSN. And more importantly, helium is unlikely to be completely stripped off the progenitor stars and could be present in the ejecta. It is a mystery why helium features are not detected, even though non-thermal energy sources, capable of ionizing He atoms, may exist as suggested by the O II absorption series in the early time spectra. At late times (+240d), our spectra appear to have intrinsically lower [O I]6300A luminosities than that of SN2015bn and SN2007bi, possibly an indication of smaller oxygen masses (<10-30Msun). The blue-shifted H-alpha emission relative to the hosts for all three events may be in tension with the binary star model proposed for iPTF13ehe. Finally, iPTF15esb has a peculiar light curve with three peaks separated from one another by ~ 22 days. The LC undulation is higher in bluer bands. One possible explanation is eject-CSM interaction.
Type Ic supernovae represent the explosions of the most stripped massive stars, but their progenitors and explosion mechanisms remain unclear. Larger samples of observed supernovae can help characterize the population of these transients. We present an analysis of 44 spectroscopically normal Type Ic supernovae, with focus on the light curves. The photometric data were obtained over 7 years with the Palomar Transient Factory (PTF) and its continuation, the intermediate Palomar Transient Factory (iPTF). This is the first homogeneous and large sample of SNe Ic from an untargeted survey, and we aim to estimate explosion parameters for the sample. We present K-corrected Bgriz light curves of these SNe, obtained through photometry on template-subtracted images. We performed an analysis on the shape of the $r$-band light curves and confirmed the correlation between the rise parameter Delta m_{-10} and the decline parameter Delta m_{15}. Peak r-band absolute magnitudes have an average of -17.71 +- 0.85 mag. To derive the explosion epochs, we fit the r-band lightcurves to a template derived from a well-sampled light curve. We computed the bolometric light curves using r and g band data, g-r colors and bolometric corrections. Bolometric light curves and Fe II lambda 5169 velocities at peak were used to fit to the Arnett semianalytic model in order to estimate the ejecta mass M_{ej}, the explosion energy E_{K} and the mass of radioactive nickel (M(56) Ni) for each SN. Including 41 SNe, we find average values of <M_{ej}>=4.50 +-0.79 msun, <E_{K}>=1.79 +- 0.29 x10^{51} erg, and <M(56)Ni)>= 0.19 +- 0.03 msun. The explosion-parameter distributions are comparable to those available in the literature, but our large sample also includes some transients with narrow and very broad light curves leading to more extreme ejecta masses values.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا