We study numerically the roughening properties of an interface in a two-dimensional Ising model with either random bonds or random fields, which are representative of universality classes where disorder acts only on the interface or also away from it, in the bulk. The dynamical structure factor shows a rich crossover pattern from the form of a pure system at large wavevectors $k$, to a different behavior, typical of the kind of disorder, at smaller $k$s. For the random field model a second crossover is observed from the typical behavior of a system where disorder is only effective on the surface, as the random bond model, to the truly large scale behavior, where bulk-disorder is important, that is observed at the smallest wavevectors.