ﻻ يوجد ملخص باللغة العربية
Color octet bosons are a universal prediction of models in which the 750 GeV diphoton resonance corresponds to a pion of a QCD-like composite sector. We show that the existing searches for dijet and photon plus jet resonances at the LHC constrain single productions of color octet states and can be translated into stringent limits on the 750 GeV diphoton rate. For a minimal 5 + 5bar model, the 750 GeV diphoton signal cross section at the 13 TeV LHC is constrained to be below around 5 fb. Future LHC searches for the photon plus jet resonances can establish evidence of a new color-octet state with 20/fb and validate a pion-like explanation for the 750 GeV resonance.
We point out a potential common origin of the recently observed 750 GeV diphoton resonance and a Weakly Interacting Massive Particle (WIMP) candidate. In a dark QCD sector with an unbroken dark G-parity, the diphoton resonance could be a dark G-even
We propose a hypothetical heavy leptonium, the scalar bound state of an exotic lepton-antilepton pair, as a candidate for the recent 750 GeV resonance in the early LHC Run 2 data. Such a para-leptonium is dominantly produced via photon-photon fusion
We revisit models where a heavy chiral 4th generation doublet of fermions is embedded in a class of two Higgs doublets models (2HDM) with a discrete $Z_2$ symmetry, which couples the heavy scalar doublet only to the 4th generation fermions and the li
We study kinematic distributions that may help characterise the recently observed excess in diphoton events at 750 GeV at the LHC Run 2. Several scenarios are considered, including spin-0 and spin-2 750 GeV resonances that decay directly into photon
We examine the scenario of a warped extra dimension containing bulk SM fields in light of the observed diphoton excess at 750 GeV. We demonstrate that a spin-2 graviton whose action contains localized kinetic brane terms for both gravity and gauge fi