ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectral Line De-confusion in an Intensity Mapping Survey

67   0   0.0 ( 0 )
 نشر من قبل Yun-Ting Cheng
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Spectral line intensity mapping has been proposed as a promising tool to efficiently probe the cosmic reionization and the large-scale structure. Without detecting individual sources, line intensity mapping makes use of all available photons and measures the integrated light in the source confusion limit, to efficiently map the three-dimensional matter distribution on large scales as traced by a given emission line. One particular challenge is the separation of desired signals from astrophysical continuum foregrounds and line interlopers. Here we present a technique to extract large-scale structure information traced by emission lines from different redshifts, embedded in a three-dimensional intensity mapping data cube. The line redshifts are distinguished by the anisotropic shape of the power spectra when projected onto a common coordinate frame. We consider the case where high-redshift [CII] lines are confused with multiple low-redshift CO rotational lines. We present a semi-analytic model for [CII] and CO line estimates based on the cosmic infrared background measurements, and show that with a modest instrumental noise level and survey geometry, the large-scale [CII] and CO power spectrum amplitudes can be successfully extracted from a confusion-limited data set, without external information. We discuss the implications and limits of this technique for possible line intensity mapping experiments.



قيم البحث

اقرأ أيضاً

Line-intensity mapping observations will find fluctuations of integrated line emission are attenuated by varying degrees at small scales due to the width of the line emission profiles. This attenuation may significantly impact estimates of astrophysi cal or cosmological quantities derived from measurements. We consider a theoretical treatment of the effect of line broadening on both the clustering and shot-noise components of the power spectrum of a generic line-intensity power spectrum using a halo model. We then consider possible simplifications to allow easier application in analysis, particularly in the context of inferences that require numerous, repeated, fast computations of model line-intensity signals across a large parameter space. For the CO Mapping Array Project (COMAP) and the CO(1-0) line-intensity field at $zsim3$ serving as our primary case study, we expect a $sim10%$ attenuation of the spherically averaged power spectrum on average at relevant scales of $kapprox0.2$-$0.3$ Mpc$^{-1}$, compared to $sim25%$ for the interferometric Millimetre-wave Intensity Mapping Experiment (mmIME) targeting shot noise from CO lines at $zsim1$-$5$ at scales of $kgtrsim1$ Mpc$^{-1}$. We also consider the nature and amplitude of errors introduced by simplified treatments of line broadening, and find that while an approximation using a single effective velocity scale is sufficient for spherically-averaged power spectra, a more careful treatment is necessary when considering other statistics such as higher multipoles of the anisotropic power spectrum or the voxel intensity distribution.
Following the first two annual intensity mapping workshops at Stanford in March 2016 and Johns Hopkins in June 2017, we report on the recent advances in theory, instrumentation and observation that were presented in these meetings and some of the opp ortunities and challenges that were identified looking forward. With preliminary detections of CO, [CII], Lya and low-redshift 21cm, and a host of experiments set to go online in the next few years, the field is rapidly progressing on all fronts, with great anticipation for a flood of new exciting results. This current snapshot provides an efficient reference for experts in related fields and a useful resource for nonspecialists. We begin by introducing the concept of line-intensity mapping and then discuss the broad array of science goals that will be enabled, ranging from the history of star formation, reionization and galaxy evolution to measuring baryon acoustic oscillations at high redshift and constraining theories of dark matter, modified gravity and dark energy. After reviewing the first detections reported to date, we survey the experimental landscape, presenting the parameters and capabilities of relevant instruments such as COMAP, mmIMe, AIM-CO, CCAT-p, TIME, CONCERTO, CHIME, HIRAX, HERA, STARFIRE, MeerKAT/SKA and SPHEREx. Finally, we describe recent theoretical advances: different approaches to modeling line luminosity functions, several techniques to separate the desired signal from foregrounds, statistical methods to analyze the data, and frameworks to generate realistic intensity map simulations.
We report results from a neutral hydrogen (HI) intensity mapping survey conducted with a Phased Array Feed (PAF) on the Parkes telescope. The survey was designed to cover ~ 380 deg^2 over the redshift range 0.3 < z < 1 (a volume of ~ 1.5 Gpc^3) in fo ur fields covered by the WiggleZ Dark Energy Survey. The results presented here target a narrow redshift range of 0.73 < z < 0.78 where the effect of radio frequency interference (RFI) was less problematic. The data reduction and simulation pipeline is described, with an emphasis on flagging of RFI and correction for signal loss in the data reduction process, particularly due to the foreground subtraction methodology. A cross-correlation signal was detected between the HI intensity maps and the WiggleZ redshift data, with a mean amplitude of<{Delta}T_b{delta}_{opt}> = 1.32 pm 0.42 mK (statistical errors only). A future Parkes cryogenic PAF is expected to detect the cross-correlation signal with higher accuracy than previously possible and allow measurement of the cosmic HI density at redshifts up to unity.
Line-Intensity Mapping is an emerging technique which promises new insights into the evolution of the Universe, from star formation at low redshifts to the epoch of reionization and cosmic dawn. It measures the integrated emission of atomic and molec ular spectral lines from galaxies and the intergalactic medium over a broad range of frequencies, using instruments with aperture requirements that are greatly relaxed relative to surveys for single objects. A coordinated, comprehensive, multi-line intensity-mapping experimental effort can efficiently probe over 80% of the volume of the observable Universe - a feat beyond the reach of other methods. Line-intensity mapping will uniquely address a wide array of pressing mysteries in galaxy evolution, cosmology, and fundamental physics. Among them are the cosmic history of star formation and galaxy evolution, the compositions of the interstellar and intergalactic media, the physical processes that take place during the epoch of reionization, cosmological inflation, the validity of Einsteins gravity theory on the largest scales, the nature of dark energy and the origin of dark matter.
Line-intensity mapping (LIM) of emission form star-forming galaxies can be used to measure the baryon acoustic oscillation (BAO) scale as far back as the epoch of reionization. This provides a standard cosmic ruler to constrain the expansion rate of the Universe at redshifts which cannot be directly probed otherwise. In light of growing tension between measurements of the current expansion rate using the local distance ladder and those inferred from the cosmic microwave background, extending the constraints on the expansion history to bridge between the late and early Universe is of paramount importance. Using a newly derived methodology to robustly extract cosmological information from LIM, which minimizes the inherent degeneracy with unknown astrophysics, we show that present and future experiments can gradually improve the measurement precision of the expansion rate history, ultimately reaching percent-level constraints on the BAO scale. Specifically, we provide detailed forecasts for the SPHEREx satellite, which will target the H$alpha$ and Lyman-$alpha$ lines, and for the ground-based COMAP instrument---as well as a future stage-3 experiment---that will target the CO rotational lines. Besides weighing in on the so-called Hubble tension, reliable LIM cosmic rulers can enable wide-ranging tests of dark matter, dark energy and modified gravity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا