ﻻ يوجد ملخص باللغة العربية
Extended dynamical mean-field theory (EDMFT) is insufficient to describe non-local effects in strongly correlated systems, since corrections to the mean-field solution are generally large. We present an efficient scheme for the construction of diagrammatic extensions of EDMFT that avoids usual double counting problem by using an exact change of variables (the dual boson formalism) to distinguish the correlations included in the mean-field solution and those beyond. With a computational efficiency comparable to EDMFT+GW approach, our scheme significantly improves on the charge order transition phase boundary in the extended Hubbard model.
Deviations of low-energy electronic structure of iron-based superconductors from density functional theory predictions have been parametrized in terms of band- and orbital-dependent mass renormalizations and energy shifts. The former have typically b
We review recent developments in electronic structure calculations that go beyond state-of-the-art methods such as density functional theory (DFT) and dynamical mean field theory (DMFT). Specifically, we discuss the following methods: GW as implement
While second-order phase transitions always cause strong non-local fluctuations, their effect on spectral properties crucially depends on the dimensionality. For the important case of three dimensions, we show that the electron self-energy is well se
Besides the chemical constituents, it is the lattice geometry that controls the most important material properties. In many interesting compounds, the arrangement of elements leads to pronounced anisotropies, which reflect into a varying degree of qu
A cardinal obstacle to understanding and predicting quantitatively the properties of solids and large molecules is that, for these systems, it is very challenging to describe beyond the mean-field level the quantum-mechanical interactions between ele