ترغب بنشر مسار تعليمي؟ اضغط هنا

From local to non-local correlations: the Dual Boson perspective

87   0   0.0 ( 0 )
 نشر من قبل E. A. Stepanov
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Extended dynamical mean-field theory (EDMFT) is insufficient to describe non-local effects in strongly correlated systems, since corrections to the mean-field solution are generally large. We present an efficient scheme for the construction of diagrammatic extensions of EDMFT that avoids usual double counting problem by using an exact change of variables (the dual boson formalism) to distinguish the correlations included in the mean-field solution and those beyond. With a computational efficiency comparable to EDMFT+GW approach, our scheme significantly improves on the charge order transition phase boundary in the extended Hubbard model.



قيم البحث

اقرأ أيضاً

Deviations of low-energy electronic structure of iron-based superconductors from density functional theory predictions have been parametrized in terms of band- and orbital-dependent mass renormalizations and energy shifts. The former have typically b een described in terms of a local self-energy within the framework of dynamical mean field theory, while the latter appears to require non-local effects due to interband scattering. By calculating the renormalized bandstructure in both random phase approximation (RPA) and the two-particle self-consistent approximation (TPSC), we show that correlations in pnictide systems like LaFeAsO and LiFeAs can be described rather well by a non-local self-energy. In particular, Fermi pocket shrinkage as seen in experiment occurs due to repulsive interband finite-energy scattering. For the canonical iron chalcogenide system FeSe in its bulk tetragonal phase, the situation is however more complex since even including momentum-dependent band renormalizations cannot explain experimental findings. We propose that the long-range Coulomb interaction may play an important role in band-structure renormalization in FeSe. We further compare our evaluations of non-local quasiparticle scattering lifetime within RPA and TPSC with experimental data for LiFeAs.
221 - J. M. Tomczak , P. Liu , A. Toschi 2017
We review recent developments in electronic structure calculations that go beyond state-of-the-art methods such as density functional theory (DFT) and dynamical mean field theory (DMFT). Specifically, we discuss the following methods: GW as implement ed in the Vienna {it ab initio} simulation package (VASP) with the self energy on the imaginary frequency axis, GW+DMFT, and ab initio dynamical vertex approximation (D$Gamma$A). The latter includes the physics of GW, DMFT and non-local correlations beyond, and allows for calculating (quantum) critical exponents. We present results obtained by the three methods with a focus on the benchmark material SrVO$_3$.
While second-order phase transitions always cause strong non-local fluctuations, their effect on spectral properties crucially depends on the dimensionality. For the important case of three dimensions, we show that the electron self-energy is well se parable into a local dynamical part and static non-local contributions. In particular, our non-perturbative many-body calculations for the 3D Hubbard model at different fillings demonstrate that the quasi-particle weight remains essentially momentum-independent, also in the presence of overall large non-local corrections to the self-energy. Relying on this insight we propose a space-time-separated scheme for many-body perturbation theory that is up to ten times more efficient than current implementations. Besides these far-reaching implications for state-of-the-art electronic structure schemes, our analysis will also provide guidance to the quest of going beyond them.
Besides the chemical constituents, it is the lattice geometry that controls the most important material properties. In many interesting compounds, the arrangement of elements leads to pronounced anisotropies, which reflect into a varying degree of qu asi two-dimensionality of their low-energy excitations. Here, we start by classifying important families of correlated materials according to a simple measure for the tetragonal anisotropy of their ab initio electronic (band) structure. Second, we investigate the impact of a progressively large anisotropy in driving the non-locality of many-body effects. To this end, we tune the Hubbard model from isotropic cubic in three dimensions to the two-dimensional limit and analyze it using the dynamical vertex approximation. For sufficiently isotropic hoppings, we find the self-energy to be well separable into a static non-local and a dynamical local contribution. While the latter could potentially be obtained from dynamical mean-field approaches, we find the former to be non-negligible in all cases. Further, by increasing the model-anisotropy, we quantify the degree of quasi two-dimensionality which causes this space-time separation to break down. Our systematic analysis improves the general understanding of electronic correlations in anisotropic materials, heterostructures and ultra-thin films, and provides useful guidance for future realistic studies.
101 - Nicola Lanat`a 2020
A cardinal obstacle to understanding and predicting quantitatively the properties of solids and large molecules is that, for these systems, it is very challenging to describe beyond the mean-field level the quantum-mechanical interactions between ele ctrons belonging to different atoms. Here we show that there exists an exact dual equivalence relationship between the seemingly-distinct physical problems of describing local and non-local interactions in many-electron systems. This is accomplished using a theoretical construction analogue to the quantum link approach in lattice gauge theories, featuring the non-local electron-electron interactions as if they were mediated by auxiliary high-energy fermionic particles interacting in a purely-local fashion. Besides providing an alternative theoretical direction of interpretation, this result may allow us to study both local and non-local interactions on the same footing, utilizing the powerful state-of-the-art theoretical and computational frameworks already available.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا