ترغب بنشر مسار تعليمي؟ اضغط هنا

Pseudomagnitudes and Differential Surface Brightness: Application to the apparent diameter of stars

69   0   0.0 ( 0 )
 نشر من قبل Gilles Duvert
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The diameter of a star is a major observable that serves to test the validity of stellar structure theories. It is also a difficult observable that is mostly obtained with indirect methods since the stars are so remote. Today only ~600 apparent star diameters have been measured by direct methods: optical interferometry and lunar occultations. Accurate star diameters are now required in the new field of exoplanet studies, since they condition the planets sizes in transit observations, and recent publications illustrate a visible renewal of interest in this topic. Our analysis is based on the modeling of the relationship between measured angular diameters and photometries. It makes use of two new reddening-free concepts: a distance indicator called pseudomagnitude, and a quasi-experimental observable that is independent of distance and specific to each star, called the differential surface brightness (DSB). The use of all the published measurements of apparent diameters that have been collected so far, and a careful modeling of the DSB allow us to estimate star diameters with a median statistical error of 1%, knowing their spectral type and, in the present case, the VJHKs photometries. We introduce two catalogs, the JMMC Measured Diameters Catalog (JMDC), containing measured star diameters, and the second version of the JMMC Stellar Diameter Catalog (JSDC), augmented to about 453000 star diameters. Finally, we provide simple formulas and a table of coefficients to quickly estimate stellar angular diameters and associated errors from (V, Ks) magnitudes and spectral types.



قيم البحث

اقرأ أيضاً

In this study we investigate the calibration of surface brightness--color (SBC) relations based solely on eclipsing binary stars. We selected a sample of 35 detached eclipsing binaries with trigonometric parallaxes from Gaia DR1 or Hipparcos, whose a bsolute dimensions are known with an accuracy better than 3% and that lie within 0.3 kpc from the Sun. For the purpose of this study, we used mostly homogeneous optical and near-infrared photometry based on the Tycho-2 and 2MASS catalogs. We derived geometric angular diameters for all stars in our sample with a precision better than 10%, and for 11 of them with a precision better than 2%. The precision of individual angular diameters of the eclipsing binary components is currently limited by the precision of the geometric distances ($sim$5% on average). However, by using a subsample of systems with the best agreement between their geometric and photometric distances, we derived the precise SBC relations based only on eclipsing binary stars. These relations have precisions that are comparable to the best available SBC relations based on interferometric angular diameters, and they are fully consistent with them. With very precise Gaia parallaxes becoming available in the near future, angular diameters with a precision better than 1% will be abundant. At that point, the main uncertainty in the total error budget of the SBC relations will come from transformations between different photometric systems, disentangling of component magnitudes, and for hot OB stars, the main uncertainty will come from the interstellar extinction determination. We argue that all these issues can be overcome with modern high-quality data and conclude that a precision better than 1% is entirely feasible.
Surface brightness-color relations (SBCRs) are used for estimating angular diameters and deriving stellar properties. They are critical to derive extragalactic distances of early-type and late-type eclipsing binaries or, potentially, for extracting p lanetary parameters of late-type stars hosting planets. Various SBCRs have been implemented so far, but strong discrepancies in terms of precision and accuracy still exist in the literature. We aim to develop a precise SBCR for early-type B and A stars using selection criteria, based on stellar characteristics, and combined with homogeneous interferometric angular diameter measurements. We also improve SBCRs for late-type stars, in particular in the Gaia photometric band. We observed 18 early-type stars with the VEGA interferometric instrument, installed on the CHARA array. We then applied additional criteria on the photometric measurements, together with stellar characteristics diagnostics in order to build the SBCRs. We calibrated a SBCR for subgiant and dwarf early-type stars. The RMS of the relation is $sigma_{F_{V_{0}}} = 0.0051,$mag, leading to an average precision of 2.3% on the estimation of angular diameters, with 3.1% for $V-K < -0.2,$mag and 1.8% for $V-K > -0.2,$mag. We found that the conversion between Johnson-$K$ and 2MASS-$K_s$ photometries is a key issue for early-type stars. Following this result, we have revisited our previous SBCRs for late-type stars by calibrating them with either converted Johnson-$K$ or 2MASS-$K_s$ photometries. We also improve the calibration of these SBCRs based on the Gaia photometry. The expected precision on the angular diameter using our SBCRs for late-type stars ranges from 1.0% to 2.7%. By reaching a precision of 2.3% on the estimation of angular diameters for early-type stars, significant progress has been made to determine extragalactic distances using early-type eclipsing binaries.
Large millimeter interferometers are revealing a growing number of rotating outflows, which are suggested to trace magneto-centrifugal disk winds (MHD DWs). However, their impact on disk accretion is not yet well quantified. Here we identify systemat ic biases in retrieving the true launch zone, magnetic lever arm, and angular momentum flux of an MHD DW from apparent rotation signatures. Synthetic position-velocity cuts are constructed from self-similar MHD DWs over a broad range of parameters, and three different methods are applied for estimating the specific angular momentum. We find that the launch radius inferred using the well-known relation from Anderson et al. (2006) can markedly differ from the true outermost launch radius $r_{out}$ of the DW. The double-peak separation and flow width methods provide only a strict lower limit to $r_{out}$. This bias is independent of angular resolution and can reach a factor ten. In contrast, the rotation curve method gives a good estimate of $r_{out}$ when the flow is well resolved, and an upper limit otherwise. The magnetic lever arm is always underestimated. Only comparison with synthetic predictions can take into account properly all observational effects. As an application, we present a comparison with ALMA observations of HH212 at resolutions from 250 au to 16 au, which represents the most stringent observational test of MHD DW to date. This comparison confirms our predicted biases for the double-peak separation method, and the large $r_{out}sim40~$au and small magnetic lever arm first suggested by Tabone et al. (2017). We also derive the first accurate analytical expression for the fraction of disk angular momentum extracted by an MHD disk wind of given radial extent, magnetic lever arm, and mass flux. Application to HH212 confirms that MHD DWs are serious candidates for the steady angular momentum extraction process in young disks.
The surface brightness -- colour relation (SBCR) is a basic tool in establishing precise and accurate distances within the Local Group. Detached eclipsing binary stars with accurately determined radii and trigonometric parallaxes allow for a calibrat ion of the SBCRs with unprecedented accuracy. We analysed four nearby eclipsing binary stars containing late F-type main sequence components: AL Ari, AL Dor, FM Leo and BN Scl. We determined very precise spectroscopic orbits and combined them with high precision ground- and space-based photometry. We derived the astrophysical parameters of their components with mean errors of 0.1% for mass and 0.4% for radius. We combined those four systems with another 24 nearby eclipsing binaries with accurately known radii from the literature for which $Gaia$ EDR3 parallaxes are available, in order to derive the SBCRs. The resulting SBCRs cover stellar spectral types from B9 V to G7 V. For calibrations we used Johnson optical $B$ and $V$, $Gaia$ $G_{rm BP}$ and $G$ and 2MASS $JHK$ bands. The most precise relations are calibrated using the infrared $K$ band and allow to predict angular diameters of A-, F-, and G-type dwarf and subgiant stars with a precision of 1%.
The aim of this work is to improve the SBC relation for early-type stars in the $-1 leq V-K leq 0$ color domain, using optical interferometry. Observations of eight B- and A-type stars were secured with the VEGA/CHARA instrument in the visible. The d erived uniform disk angular diameters were converted into limb darkened angular diameters and included in a larger sample of 24 stars, already observed by interferometry, in order to derive a revised empirical relation for O, B, A spectral type stars with a V-K color index ranging from -1 to 0. We also took the opportunity to check the consistency of the SBC relation up to $V-K simeq 4$ using 100 additional measurements. We determined the uniform disk angular diameter for the eight following stars: $gamma$ Ori, $zeta$ Per, $8$ Cyg, $iota$ Her, $lambda$ Aql, $zeta$ Peg, $gamma$ Lyr, and $delta$ Cyg with V-K color ranging from -0.70 to 0.02 and typical precision of about $1.5%$. Using our total sample of 132 stars with $V-K$ colors index ranging from about $-1$ to $4$, we provide a revised SBC relation. For late-type stars ($0 leq V-K leq 4$), the results are consistent with previous studies. For early-type stars ($-1 leq V-K leq 0$), our new VEGA/CHARA measurements combined with a careful selection of the stars (rejecting stars with environment or stars with a strong variability), allows us to reach an unprecedented precision of about 0.16 magnitude or $simeq 7%$ in terms of angular diameter.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا