ترغب بنشر مسار تعليمي؟ اضغط هنا

Physics-Based Swarm Intelligence for Disaster Relief Communications

120   0   0.0 ( 0 )
 نشر من قبل Laurent Reynaud
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Laurent Reynaud




اسأل ChatGPT حول البحث

This study explores how a swarm of aerial mobile vehicles can provide network connectivity and meet the stringent requirements of public protection and disaster relief operations. In this context, we design a physics-based controlled mobility strategy, which we name the extended Virtual Force Protocol (VFPe), allowing self-propelled nodes, and in particular here unmanned aerial vehicles, to fly autonomously and cooperatively. In this way, ground devices scattered on the operation site may establish communications through the wireless multi-hop communication routes formed by the network of aerial nodes. We further investigate through simulations the behavior of the VFPe protocol, notably focusing on the way node location information is disseminated into the network as well as on the impact of the number of exploration nodes on the overall network performance.



قيم البحث

اقرأ أيضاً

Integrating unmanned aerial vehicles (UAV) to non-orthogonal multiple access (NOMA) visible light communications (VLC) exposes many potentials over VLC and NOMA-VLC systems. In this circumstance, user grouping is of importance to reduce the NOMA deco ding complexity when the number of users is large; however, this issue has not been considered in the existing study. In this paper, we aim to maximize the weighted sum-rate of all the users by jointly optimizing UAV placement, user grouping, and power allocation in downlink NOMA-VLC systems. We first consider an efficient user clustering strategy, then apply a swarm intelligence approach, namely Harris Hawk Optimization (HHO), to solve the joint UAV placement and power allocation problem. Simulation results show outperformance of the proposed algorithm in comparison with four alternatives: OMA, NOMA without pairing, NOMA-VLC with fixed UAV placement, and random user clustering.
Algorithms implementing populations of agents which interact with one another and sense their environment may exhibit emergent behavior such as self-organization and swarm intelligence. Here a swarm system, called Databionic swarm (DBS), is introduce d which is able to adapt itself to structures of high-dimensional data characterized by distance and/or density-based structures in the data space. By exploiting the interrelations of swarm intelligence, self-organization and emergence, DBS serves as an alternative approach to the optimization of a global objective function in the task of clustering. The swarm omits the usage of a global objective function and is parameter-free because it searches for the Nash equilibrium during its annealing process. To our knowledge, DBS is the first swarm combining these approaches. Its clustering can outperform common clustering methods such as K-means, PAM, single linkage, spectral clustering, model-based clustering, and Ward, if no prior knowledge about the data is available. A central problem in clustering is the correct estimation of the number of clusters. This is addressed by a DBS visualization called topographic map which allows assessing the number of clusters. It is known that all clustering algorithms construct clusters, irrespective of the data set contains clusters or not. In contrast to most other clustering algorithms, the topographic map identifies, that clustering of the data is meaningless if the data contains no (natural) clusters. The performance of DBS is demonstrated on a set of benchmark data, which are constructed to pose difficult clustering problems and in two real-world applications.
As the integration of unmanned aerial vehicles (UAVs) into visible light communications (VLC) can offer many benefits for massive-connectivity applications and services in 5G and beyond, this work considers a UAV-assisted VLC using non-orthogonal mul tiple-access. More specifically, we formulate a joint problem of power allocation and UAVs placement to maximize the sum rate of all users, subject to constraints on power allocation, quality of service of users, and UAVs position. Since the problem is non-convex and NP-hard in general, it is difficult to be solved optimally. Moreover, the problem is not easy to be solved by conventional approaches, e.g., coordinate descent algorithms, due to channel modeling in VLC. Therefore, we propose using harris hawks optimization (HHO) algorithm to solve the formulated problem and obtain an efficient solution. We then use the HHO algorithm together with artificial neural networks to propose a design which can be used in real-time applications and avoid falling into the local minima trap in conventional trainers. Numerical results are provided to verify the effectiveness of the proposed algorithm and further demonstrate that the proposed algorithm/HHO trainer is superior to several alternative schemes and existing metaheuristic algorithms.
In this paper, a novel framework for guaranteeing ultra-reliable millimeter wave (mmW) communications using multiple artificial intelligence (AI)-enabled reconfigurable intelligent surfaces (RISs) is proposed. The use of multiple AI-powered RISs allo ws changing the propagation direction of the signals transmitted from a mmW access point (AP) thereby improving coverage particularly for non-line-of-sight (NLoS) areas. However, due to the possibility of highly stochastic blockage over mmW links, designing an intelligent controller to jointly optimize the mmW AP beam and RIS phase shifts is a daunting task. In this regard, first, a parametric risk-sensitive episodic return is proposed to maximize the expected bit rate and mitigate the risk of mmW link blockage. Then, a closed-form approximation of the policy gradient of the risk-sensitive episodic return is analytically derived. Next, the problem of joint beamforming for mmW AP and phase shift control for mmW RISs is modeled as an identical payoff stochastic game within a cooperative multi-agent environment, in which the agents are the mmW AP and the RISs. Two centralized and distributed controllers are proposed to control the policies of the mmW AP and RISs. To directly find an optimal solution, the parametric functional-form policies for these controllers are modeled using deep recurrent neural networks (RNNs). Simulation results show that the error between policies of the optimal and the RNN-based controllers is less than 1.5%. Moreover, the variance of the achievable rates resulting from the deep RNN-based controllers is 60% less than the variance of the risk-averse baseline.
This paper introduces AdaSwarm, a novel gradient-free optimizer which has similar or even better performance than the Adam optimizer adopted in neural networks. In order to support our proposed AdaSwarm, a novel Exponentially weighted Momentum Partic le Swarm Optimizer (EMPSO), is proposed. The ability of AdaSwarm to tackle optimization problems is attributed to its capability to perform good gradient approximations. We show that, the gradient of any function, differentiable or not, can be approximated by using the parameters of EMPSO. This is a novel technique to simulate GD which lies at the boundary between numerical methods and swarm intelligence. Mathematical proofs of the gradient approximation produced are also provided. AdaSwarm competes closely with several state-of-the-art (SOTA) optimizers. We also show that AdaSwarm is able to handle a variety of loss functions during backpropagation, including the maximum absolute error (MAE).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا