ﻻ يوجد ملخص باللغة العربية
Although thick stellar discs are detected in nearly all edge-on disc galaxies, their formation scenarios still remain a matter of debate. Due to observational difficulties, there is a lack of information about their stellar populations. Using the Russian 6-m telescope BTA we collected deep spectra of thick discs in three edge-on S0-a disc galaxies located in different environments: NGC4111 in a dense group, NGC4710 in the Virgo cluster, and NGC5422 in a sparse group. We see intermediate age (4-5 Gyr) metal rich ([Fe/H] $sim$ -0.2 - 0.0 dex) stellar populations in NGC4111 and NGC4710. On the other hand, NGC5422 does not harbour young stars, its disc is thick and old (10 Gyr), without evidence for a second component, and its $alpha$-element abundance suggests a 1.5-2 Gyr long formation epoch implying its formation at high redshift. Our results suggest the diversity of thick disc formation scenarios.
We analyse the phase-space structure of simulated thick discs that are the result of a significant merger between a disc galaxy and a satellite. Our main goal is to establish what would be the characteristic imprints of a merger origin for the Galact
We have obtained high-resolution spectra and carried out a detailed elemental abundance analysis for a new sample of 899 F and G dwarf stars in the Solar neighbourhood. The results allow us to, in a multi-dimensional space consisting of stellar ages,
Recent observations suggest a double-branch behaviour of Li/H versus metallicity in the local thick and thin discs. This is reminiscent of the corresponding O/Fe versus Fe/H behaviour, which has been explained as resulting from radial migration in th
The core-cusp problem is one of the controversial issues in the standard paradigm of $Lambda$ cold dark matter ($Lambda$CDM) theory. However, under the assumption of conventional spherical symmetry, the strong degeneracy among model parameters makes
Thick disks appear to be common in external large spiral galaxies and our own Milky Way also hosts one. The existence of a thick disk is possibly directly linked to the formation history of the host galaxy and if its properties is known it can constr