ﻻ يوجد ملخص باللغة العربية
We apply novel inner-iteration preconditioned Krylov subspace methods to the interior-point algorithm for linear programming (LP). Inner-iteration preconditioners recently proposed by Morikuni and Hayami enable us to overcome the severe ill-conditioning of linear equations solved in the final phase of interior-point iterations. The Krylov subspace methods do not suffer from rank-deficiency and therefore no preprocessing is necessary even if rows of the constraint matrix are not linearly independent. By means of these methods, a new interior-point recurrence is proposed in order to omit one matrix-vector product at each step. Extensive numerical experiments are conducted over diverse instances of 138 LP problems including the Netlib, QAPLIB, Mittelmann and Atomizer Basis Pursuit collections. The largest problem has 434,580 unknowns. It turns out that our implementation is more robust than the standard public domain solvers SeDuMi (Self-Dual Minimization), SDPT3 (Semidefinite Programming Toh-Todd-Tutuncu) and the LSMR iterative solver in PDCO (Primal-Dual Barrier Method for Convex Objectives) without increasing CPU time. The proposed interior-point method based on iterative solvers succeeds in solving a fairly large number of LP instances from benchmark libraries under the standard stopping criteria. The work also presents a fairly extensive benchmark test for several renowned solvers including direct and iterative solvers.
Solving optimization problems is the key to decision making in many real-life analytics applications. However, the coefficients of the optimization problems are often uncertain and dependent on external factors, such as future demand or energy or sto
Subspace recycling iterative methods and other subspace augmentation schemes are a successful extension to Krylov subspace methods in which a Krylov subspace is augmented with a fixed subspace spanned by vectors deemed to be helpful in accelerating c
We provide a condition-based analysis of two interior-point methods for unconstrained geometric programs, a class of convex programs that arise naturally in applications including matrix scaling, matrix balancing, and entropy maximization. Our condit
Recent advances in open source interior-point optimization methods and power system related software have provided researchers and educators with the necessary platform for simulating and optimizing power networks with unprecedented convenience. With
We provide convergence rates for Krylov subspace solutions to the trust-region and cubic-regularized (nonconvex) quadratic problems. Such solutions may be efficiently computed by the Lanczos method and have long been used in practice. We prove error