Fermis golden rule: its derivation and breakdown by an ideal model


الملخص بالإنكليزية

Fermis golden rule is of great importance in quantum dynamics. However, in many textbooks on quantum mechanics, its contents and limitations are obscured by the approximations and arguments in the derivation, which are inevitable because of the generic setting considered. Here we propose to introduce it by an ideal model, in which the quasi-continuum band consists of equaldistant levels extending from $-infty $ to $+infty $, and each of them couples to the discrete level with the same strength. For this model, the transition probability in the first order perturbation approximation can be calculated analytically by invoking the Poisson summation formula. It turns out to be a emph{piecewise linear} function of time, demonstrating on one hand the key features of Fermis golden rule, and on the other hand that the rule breaks down beyond the emph{Heisenberg time}, even when the first order perturbation approximation itself is still valid.

تحميل البحث