ﻻ يوجد ملخص باللغة العربية
Inelastic losses in core level x-ray spectra arise from many-body excitations, leading to broadening and damping as well as satellite peaks in x-ray photoemission (XPS) and x-ray absorption (XAS) spectra. Here we present a practical approach for calculating these losses based on a cumulant representation of the particle-hole Greens function, a quasi-boson approximation, and a partition of the cumulant into extrinsic, intrinsic and interference terms. The intrinsic losses are calculated using real-time, time-dependent density functional theory while the extrinsic losses are obtained from the GW approximation of the photo-electron self-energy and the interference terms are approximated. These effects are included in the spectra using a convolution with an energy dependent particle-hole spectral function. The approach elucidates the nature of the spectral functions in XPS and XAS and explains the significant cancellation between extrinsic and intrinsic losses. Edge-singularity effects in metals are also accounted for. Illustrative results are presented for the XPS and XAS for both weakly and more correlated systems.
Inelastic losses are crucial to a quantitative analysis of x-ray absorption spectra. However, current treatments are semi-phenomenological in nature. Here a first-principles, many-pole generalization of the plasmon-pole model is developed for improve
X-ray photoemission spectra generally exhibit satellite features in addition to the quasi-particle peaks due to many-body excitations, which have been of considerable theoretical and experimental interest. However, the satellites attributed to charge
We present an equation of motion coupled cluster approach for calculating and understanding intrinsic inelastic losses in core level x-ray absorption spectra (XAS). The method is based on a factorization of the transition amplitude in the time-domain
There has been considerable interest in properties of condensed matter at finite temperature, including non-equilibrium behavior and extreme conditions up to the warm dense matter regime. Such behavior is encountered, e.g., in experimental time resol
The ladder compound Sr$_{14}$Cu$_{24}$O$_{41}$ is of interest both as a quasi-one-dimensional analog of the superconducting cuprates and as a superconductor in its own right when Sr is substituted by Ca. In order to model resonant inelastic x-ray sca