ﻻ يوجد ملخص باللغة العربية
Supernova (SN) iPTF13bvn in NGC 5806 was the first Type Ib SN to have been tentatively associated with a progenitor candidate in pre-explosion images. We performed deep ultraviolet (UV) and optical Hubble Space Telescope (HST) observations of the SN site 740 days after explosion. We detect an object in the optical bands that is fainter than the pre-explosion object. This dimming is likely not produced by dust absorption in the ejecta; thus, our finding confirms the connection of the progenitor candidate with the SN. The object in our data is likely dominated by the fading SN, which implies that the pre-SN flux is mostly due to the progenitor. We compare our revised pre-SN photometry with previously proposed progenitor models. Although binary progenitors are favored, models need to be refined. In particular, to comply with our deep UV detection limit, any companion star must be less luminous than a late-O star or substantially obscured by newly formed dust. A definitive progenitor characterization will require further observations to disentangle the contribution of a much fainter SN and its environment.
The intermediate Palomar Transient Factory reports our discovery of a young supernova, iPTF13bvn, in the nearby galaxy, NGC5806 (22.5Mpc). Our spectral sequence in the optical and infrared suggests a likely Type Ib classification. We identify a singl
Aims. We present and analyse late-time observations of the type-Ib supernova with possible pre-supernova progenitor detection, iPTF13bvn, taken at $sim$300 days after the explosion, and discuss these in the context of constraints on the supernovas pr
We present new late-time near-infrared imaging of the site of the nearby core-collapse supernova SN 2012aw, confirming the disappearance of the point source identified by Fraser et al. (2012) and Van Dyk et al. (2012) as a candidate progenitor in bot
We report the first detection of a credible progenitor system for a Type Ic supernova (SN Ic), SN 2017ein. We present spectra and photometry of the SN, finding it to be similar to carbon-rich, low-luminosity SNe Ic. Using a post-explosion Keck adapti
The dominant radioactive energy source powering Type Ia supernova light curves is expected to switch from the decay of $^{56}$Co to $^{57}$Co at very late epochs. We use archival HST images of SN1992A obtained more than 900 days after explosion to co