ترغب بنشر مسار تعليمي؟ اضغط هنا

The FMOS-COSMOS survey of star-forming galaxies at z~1.6. IV: Excitation state and chemical enrichment of the interstellar medium

88   0   0.0 ( 0 )
 نشر من قبل Daichi Kashino
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the physical conditions of ionized gas in high-z star-forming galaxies using diagnostic diagrams based on the rest-frame optical emission lines. The sample consists of 701 galaxies with an Ha detection at $1.4lesssim zlesssim1.7$, from the FMOS-COSMOS survey, that represent the normal star-forming population over the stellar mass range $10^{9.6} lesssim M_ast/M_odot lesssim 10^{11.6}$ with those at $M_ast>10^{11}~M_odot$ being well sampled. We confirm an offset of the average location of star-forming galaxies in the BPT diagram ([OIII]/Hb vs. [NII]/Ha), primarily towards higher [OIII]/Hb, compared with local galaxies. Based on the [SII] ratio, we measure an electron density ($n_e=220^{+170}_{-130}~mathrm{cm^{-3}}$), that is higher than that of local galaxies. Based on comparisons to theoretical models, we argue that changes in emission-line ratios, including the offset in the BPT diagram, are caused by a higher ionization parameter both at fixed stellar mass and at fixed metallicity with additional contributions from a higher gas density and possibly a hardening of the ionizing radiation field. Ionization due to AGNs is ruled out as assessed with Chandra. As a consequence, we revisit the mass-metallicity relation using [NII]/Ha and a new calibration including [NII]/[SII] as recently introduced by Dopita et al. Consistent with our previous results, the most massive galaxies ($M_astgtrsim10^{11}~M_odot$) are fully enriched, while those at lower masses have metallicities lower than local galaxies. Finally, we demonstrate that the stellar masses, metallicities and star formation rates of the FMOS sample are well fit with a physically-motivated model for the chemical evolution of star-forming galaxies.



قيم البحث

اقرأ أيضاً

We present a spectroscopic survey of galaxies in the COSMOS field using the Fiber Multi-Object Spectrograph (FMOS), a near-infrared instrument on the Subaru Telescope. Our survey is specifically designed to detect the Halpha emission line that falls within the H-band (1.6-1.8 um) spectroscopic window from star-forming galaxies with 1.4 < z < 1.7 and M_stellar>~10^10 Msolar. With the high multiplex capability of FMOS, it is now feasible to construct samples of over one thousand galaxies having spectroscopic redshifts at epochs that were previously challenging. The high-resolution mode (R~2600) effectively separates Halpha and [NII]6585 thus enabling studies of the gas-phase metallicity and photoionization state of the interstellar medium. The primary aim of our program is to establish how star formation depends on stellar mass and environment, both recognized as drivers of galaxy evolution at lower redshifts. In addition to the main galaxy sample, our target selection places priority on those detected in the far-infrared by Herschel/PACS to assess the level of obscured star formation and investigate, in detail, outliers from the star formation rate - stellar mass relation. Galaxies with Halpha detections are followed up with FMOS observations at shorter wavelengths using the J-long (1.11-1.35 um) grating to detect Hbeta and [OIII]5008 that provides an assessment of extinction required to measure star formation rates not hampered by dust, and an indication of embedded Active Galactic Nuclei. With 460 redshifts measured from 1153 spectra, we assess the performance of the instrument with respect to achieving our goals, discuss inherent biases in the sample, and detail the emission-line properties. Our higher-level data products, including catalogs and spectra, are available to the community.
We present the first results from a near-IR spectroscopic survey of the COSMOS field, using the Fiber Multi-Object Spectrograph on the Subaru telescope, designed to characterize the star-forming galaxy population at $1.4<z<1.7$. The high-resolution m ode is implemented to detect H$alpha$ in emission between $1.6{rm -}1.8 mathrm{mu m}$ with $f_{rm Halpha}gtrsim4times10^{-17}$ erg cm$^{-2}$ s$^{-1}$. Here, we specifically focus on 271 sBzK-selected galaxies that yield a H$alpha$ detection thus providing a redshift and emission line luminosity to establish the relation between star formation rate and stellar mass. With further $J$-band spectroscopy for 89 of these, the level of dust extinction is assessed by measuring the Balmer decrement using co-added spectra. We find that the extinction ($0.6lesssim A_mathrm{Halpha} lesssim 2.5$) rises with stellar mass and is elevated at high masses compared to low-redshift galaxies. Using this subset of the spectroscopic sample, we further find that the differential extinction between stellar and nebular emission hbox{$E_mathrm{star}(B-V)/E_mathrm{neb}(B-V)$} is 0.7--0.8, dissimilar to that typically seen at low redshift. After correcting for extinction, we derive an H$alpha$-based main sequence with a slope ($0.81pm0.04$) and normalization similar to previous studies at these redshifts.
We investigate the relationships between stellar mass, gas-phase oxygen abundance (metallicity), star formation rate, and dust content of star-forming galaxies at z$sim$1.6 using Subaru/FMOS spectroscopy in the COSMOS field. The mass-metallicity rela tion at $zsim1.6$ is steeper than the relation observed in the local Universe. The steeper MZ relation at $zsim1.6$ is mainly due to evolution in the stellar mass where the MZ relation begins to turnover and flatten. This turnover mass is 1.2 dex larger at $zsim1.6$. The most massive galaxies at $zsim1.6$ ($sim 10^{11}M_odot$) are enriched to the level observed in massive galaxies in the local Universe. The mass-metallicity relation we measure at $zsim1.6$ supports the suggestion of an empirical upper metallicity limit that does not significantly evolve with redshift. We find an anti-correlation between metallicity and star formation rate for galaxies at a fixed stellar mass at $zsim1.6$ which is similar to trends observed in the local Universe. We do not find a relation between stellar mass, metallicity and star formation rate that is independent of redshift; our data suggest that there is redshift evolution in this relation. We examine the relation between stellar mass, metallicity and dust extinction. We find that at a fixed stellar mass dustier galaxies tend to be more metal rich. From examination of the stellar masses, metallicities, SFRs and dust extinctions we conclude that stellar mass is most closely related to dust extinction.
We present results from Subaru/FMOS near-infrared (NIR) spectroscopy of 118 star-forming galaxies at $zsim1.5$ in the Subaru Deep Field. These galaxies are selected as [OII]$lambda$3727 emitters at $zapprox$ 1.47 and 1.62 from narrow-band imaging. We detect H$alpha$ emission line in 115 galaxies, [OIII]$lambda$5007 emission line in 45 galaxies, and H$beta$, [NII]$lambda$6584, and [SII]$lambdalambda$6716,6731 in 13, 16, and 6 galaxies, respectively. Including the [OII] emission line, we use the six strong nebular emission lines in the individual and composite rest-frame optical spectra to investigate physical conditions of the interstellar medium in star-forming galaxies at $zsim$1.5. We find a tight correlation between H$alpha$ and [OII], which suggests that [OII] can be a good star formation rate (SFR) indicator for galaxies at $zsim1.5$. The line ratios of H$alpha$/[OII] are consistent with those of local galaxies. We also find that [OII] emitters have strong [OIII] emission lines. The [OIII]/[OII] ratios are larger than normal star-forming galaxies in the local Universe, suggesting a higher ionization parameter. Less massive galaxies have larger [OIII]/[OII] ratios. With evidence that the electron density is consistent with local galaxies, the high ionization of galaxies at high redshifts may be attributed to a harder radiation field by a young stellar population and/or an increase in the number of ionizing photons from each massive star.
We conducted observations of 12CO(J=5-4) and dust thermal continuum emission toward twenty star-forming galaxies on the main sequence at z~1.4 using ALMA to investigate the properties of the interstellar medium. The sample galaxies are chosen to trac e the distributions of star-forming galaxies in diagrams of stellar mass-star formation rate and stellar mass-metallicity. We detected CO emission lines from eleven galaxies. The molecular gas mass is derived by adopting a metallicity-dependent CO-to-H2 conversion factor and assuming a CO(5-4)/CO(1-0) luminosity ratio of 0.23. Molecular gas masses and its fractions (molecular gas mass/(molecular gas mass + stellar mass)) for the detected galaxies are in the ranges of (3.9-12) x 10^{10} Msun and 0.25-0.94, respectively; these values are significantly larger than those in local spiral galaxies. The molecular gas mass fraction decreases with increasing stellar mass; the relation holds for four times lower stellar mass than that covered in previous studies, and that the molecular gas mass fraction decreases with increasing metallicity. Stacking analyses also show the same trends. The dust thermal emissions were clearly detected from two galaxies and marginally detected from five galaxies. Dust masses of the detected galaxies are (3.9-38) x 10^{7} Msun. We derived gas-to-dust ratios and found they are 3-4 times larger than those in local galaxies. The depletion times of molecular gas for the detected galaxies are (1.4-36) x 10^{8} yr while the results of the stacking analysis show ~3 x 10^{8} yr. The depletion time tends to decrease with increasing stellar mass and metallicity though the trend is not so significant, which contrasts with the trends in local galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا