ﻻ يوجد ملخص باللغة العربية
Thin block copolymer films have attracted considerable academic attention because of their ability to self-assemble into various microstructures, many of which have potential technological applications. Despite the ongoing interest, little effort has focused on the onset of plasticity and failure which are important factors for the eventual adoption of these materials. Here we use delamination to impart a quantifiable local stain on thin films of homopolymer polystyrene and poly(2-vinylpyridine), as well as block copolymers made of styrene and 2-vinylpyridine. Direct observation of the damage caused by bending with atomic force microscopy and laser scanning confocal microscopy, leads to the identification of a critical strain for the onset of plasticity. Moving beyond our initial scaling analysis, the more quantitative analysis presented here shows strain levels for thick films to be comparable to bulk measurements. Monitoring the critical strain leads to several observations: 1.) as-cast PS-P2VP has low critical strain, 2.) annealing slowly increases critical strain as microstructural ordering takes place, and 3.) similar to the homopolymer, both as cast and ordered films both show increasing critical strain under confinement.
Polymer glasses have numerous advantageous mechanical properties in comparison to other materials. One of the most useful is the high degree of toughness that can be achieved due to significant yield occurring in the material. Remarkably, the onset o
Experimental data on thin films of cylinder-forming block copolymers (BC) -- free-standing BC membranes as well as supported BC films -- strongly suggest that the local orientation of the BC patterns is coupled to the geometry in which the patterns a
The aging behavior is investigated for thin films of atactic polystyrene through measurements of complex electric capacitance. During isothermal aging process the real part of the electric capacitance increases with aging time, while the imaginary pa
Glassy dynamics was investigated for thin films of atactic polystyrene by complex electric capacitance measurements using dielectric relaxation spectroscopy. During the isothermal aging process the real part of the electric capacitance increased with
The glass transition temperature and relaxation dynamics of the segmental motions of thin films of polystyrene labeled with a dye, 4-[N-ethyl-N-(hydroxyethyl)]amino-4-nitraozobenzene (Disperse Red 1, DR1) are investigated using dielectric measurement