ترغب بنشر مسار تعليمي؟ اضغط هنا

Weyl-gauge invariant proof of the Spin-Statistics Theorem

276   0   0.0 ( 0 )
 نشر من قبل Enrico Santamato
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The traditional standard theory of quantum mechanics is unable to solve the spin-statistics problem, i.e. to justify the utterly important qo{Pauli Exclusion Principle} but by the adoption of the complex standard relativistic quantum field theory. In a recent paper (Ref. [1]) we presented a proof of the spin-statistics problem in the nonrelativistic approximation on the basis of the qo{Conformal Quantum Geometrodynamics}. In the present paper, by the same theory the proof of the Spin-Statistics Theorem is extended to the relativistic domain in the general scenario of curved spacetime. The relativistic approach allows to formulate a manifestly step-by-step Weyl gauge invariant theory and to emphasize some fundamental aspects of group theory in the demonstration. No relativistic quantum field operators are used and the particle exchange properties are drawn from the conservation of the intrinsic helicity of elementary particles. It is therefore this property, not considered in the Standard Quantum Mechanics, which determines the correct spin-statistics connection observed in Nature [1]. The present proof of the Spin-Statistics Theorem is simpler than the one presented in Ref. [1], because it is based on symmetry group considerations only, without having recourse to frames attached to the particles.



قيم البحث

اقرأ أيضاً

The traditional Standard Quantum Mechanics is unable to solve the Spin-Statistics problem, i.e. to justify the utterly important Pauli Exclusion Principle. We show that this is due to the non completeness of the standard theory due to an arguable con ception of the spin as a vector characterizing the rotational properties of the elementary particles. The present Article presents a complete and straightforward solution of the Spin-Statistics problem on the basis of the Conformal Quantum Geometrodynamics, a theory that has been proved to reproduce successfully all relevant processes of the Standard Quantum Mechanics based on the Dirac or Schrodinger equations, including Heisenberg uncertainty relations and nonlocal EPR correlations. When applied to a system made of many identical particles, an additional property of all elementary particles enters naturally into play: the intrinsic helicity. This property determines the correct Spin-Statistics connection observed in Nature.
160 - Masashi Wakamatsu 2014
Is gauge-invariant complete decomposition of the nucleon spin possible? Although it is a difficult theoretical question which has not reached a complete consensus yet, a general agreement now is that there are at least two physically inequivalent gau ge-invariant decompositions (I) and (II) of the nucleon. %The one is a nontrivial gauge-invariant %generalization of the Jaffe-Manohar decomposition. %The other is an extension of the Ji decomposition, which allows %a gauge-invariant decomposition of the total gluon angular %momentum into the intrinsic spin and orbital parts. In these two decompositions, the intrinsic spin parts of quarks and gluons are just common. What discriminate these two decompositions are the orbital angular momentum parts. The orbital angular momenta of quarks and gluons appearing in the decomposition (I) are the so-called mechanical orbital angular momenta, while those appearing in the decomposition (II) are the generalized (gauge-invariant) canonical ones. By this reason, these decompositions are also called the mechanical and canonical decompositions of the nucleon spin, respectively. A crucially important question is which decomposition is more favorable from the observational viewpoint. The main objective of this concise review is to try to answer this question with careful consideration of recent intensive researches on this problem.
205 - P. J. Mora 2012
We compute the linearized Weyl-Weyl correlator using a new solution for the graviton propagator on de Sitter background in de Donder gauge. The result agrees exactly with a previous computation in a noncovariant gauge. We also use dimensional regular ization to compute the one loop expectation value of the square of the Weyl tensor.
The content of two additional Ward identities exhibited by the $U(1)$ Higgs model is exploited. These novel Ward identities can be derived only when a pair of local composite operators providing a gauge invariant setup for the Higgs particle and the massive vector boson is introduced in the theory from the beginning. Among the results obtained from the above mentioned Ward identities, we underline a new exact relationship between the stationary condition for the vacuum energy, the vanishing of the tadpoles and the vacuum expectation value of the gauge invariant scalar operator. We also present a characterization of the two-point correlation function of the composite operator corresponding to the vector boson in terms of the two-point function of the elementary gauge fields. Finally, a discussion on the connection between the cartesian and the polar parametrization of the complex scalar field is presented in the light of the Equivalence Theorem. The latter can in the current case be understood in the language of a constrained cohomology, which also allows to rewrite the action in terms of the aforementioned gauge invariant operators. We also comment on the diminished role of the global $U(1)$ symmetry and its breaking.
80 - Yu Nakayama 2021
We construct a Weyl transverse diffeomorphism invariant theory of symmetric teleparallel gravity by employing the Weyl compensator formalism. The low-energy dynamics has a single spin two gravition without a scalar degree of freedom. By construction, it is equivalent to the unimodular gravity (as well as the Einstein gravity) at the non-linear level.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا