ترغب بنشر مسار تعليمي؟ اضغط هنا

Hunt for Sterile Neutrinos: Decay at Rest Experiments

72   0   0.0 ( 0 )
 نشر من قبل Fumihiko Suekane
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English
 تأليف Fumihiko Suekane




اسأل ChatGPT حول البحث

In the standard model of the elementary particles, the number of neutrino flavor is three. However, there have been indications of existence of 4th neutrino, called sterile neutrino, in some neutrino oscillation related experiments. A number of experiments are planned to test whether such indications are true or not. Among them, experiments which use neutrinos from pi+, K+, mu+ decay at rest (DAR) are promising because the energy spectra of neutrinos are very well known and clean oscillation measurements are possible. In this proceedings, properties of such DAR neutrinos and LSND, JSNS2, OscSNS and KPipe experiments are briefly introduced.



قيم البحث

اقرأ أيضاً

100 - Christian Buck 2017
Nuclear reactors are strong, pure and well localized sources of electron antineutrinos with energies in the few MeV range. Therefore they provide a suitable environment to study neutrino properties, in particular neutrino oscillation parameters. Rece nt predictions of the expected antineutrino flux at nuclear reactors are about 6% higher than the average rate measured in different experiments. This discrepancy, known as the reactor antineutrino anomaly, is significant at the 2.5{sigma} level. Several new experiments are searching for the origin of this observed neutrino deficit. One hypothesis to be tested is an oscillation to another neutrino state. In a three flavor model reactor neutrinos do not oscillate at baselines below 100 m. Hence, if such an oscillation is observed, it would imply the existence of at least one light sterile neutrino state not participating in weak interactions. Such a discovery would open the gate for new physics beyond the Standard Model.
Neutrino physics is nowadays receiving more and more attention as a possible source of information for the long-standing problem of new physics beyond the Standard Model. The recent measurement of the mixing angle $theta_{13}$ in the standard mixing oscillation scenario encourages us to pursue the still missing results on leptonic CP violation and absolute neutrino masses. However, puzzling measurements exist that deserve an exhaustive evaluation. The NESSiE Collaboration has been setup to undertake conclusive experiments to clarify the muon-neutrino disappearance measurements at small $L/E$, which will be able to put severe constraints to models with more than the three-standard neutrinos, or even to robustly measure the presence of a new kind of neutrino oscillation for the first time. To this aim the use of the current FNAL-Booster neutrino beam for a Short-Baseline experiment has been carefully evaluated. Its recent proposal refers to the use of magnetic spectrometers at two different sites, Near and Far ones. Their positions have been extensively studied, together with the possible performances of two OPERA-like spectrometers. The proposal is constrained by availability of existing hardware and a time-schedule compatible with the undergoing project of a multi-site Liquid-Argon detectors at FNAL. The experiment to be possibly setup at Booster will allow to definitively clarify the current $ u_{mu}$ disappearance tension with $ u_{e}$ appearance and disappearance at the eV mass scale.
87 - Mikhail Danilov 2018
For a long time there were 3 main experimental indications in favor of the existence of sterile neutrinos: $bar{ u_e}$ appearance in the $bar{ u_mu}$ beam in the LSND experiment, $bar{ u_e}$ flux deficit in comparison with theoretical expectations in reactor experiments, and $ u_e$ deficit in calibration runs with radioactive sources in the Ga solar neutrino experiments SAGE and GALEX. All three problems can be explained by the existence of sterile neutrinos with the mass square difference in the ballpark of $1~mathrm{eV^2}$. Recently the MiniBooNE collaboration observed electron (anti)neutrino appearance in the muon (anti)neutrino beams. The significance of the effect reaches 6.0$sigma$ level when combined with the LSND result. Even more recently the NEUTRINO-4 collaboration claimed the observation of $bar{ u_e}$ oscillations to sterile neutrinos with a significance slightly higher than 3$sigma$. If these results are confirmed, New Physics beyond the Standard Model would be required. More than 10 experiments are devoted to searches of sterile neutrinos. Six very short baseline reactor experiments are taking data just now. We review the present results and perspectives of these experiments.
The NESSiE Collaboration has been setup to undertake a conclusive experiment to clarify the {em muon--neutrino disappearance} measurements at short baselines in order to put severe constraints to models with more than the three--standard neutrinos. T o this aim the current FNAL--Booster neutrino beam for a Short--Baseline experiment was carefully evaluated by considering the use of magnetic spectrometers at two sites, near and far ones. The detector locations were studied, together with the achievable performances of two OPERA--like spectrometers. The study was constrained by the availability of existing hardware and a time--schedule compatible with the undergoing project of multi--site Liquid--Argon detectors at FNAL. The settled physics case and the kind of proposed experiment on the Booster neutrino beam would definitively clarify the existing tension between the $ u_{mu}$ disappearance and the $ u_e$ appearance/disappearance at the eV mass scale. In the context of neutrino oscillations the measurement of $ u_{mu}$ disappearance is a robust and fast approach to either reject or discover new neutrino states at the eV mass scale. We discuss an experimental program able to extend by more than one order of magnitude (for neutrino disappearance) and by almost one order of magnitude (for antineutrino disappearance) the present range of sensitivity for the mixing angle between standard and sterile neutrinos. These extensions are larger than those achieved in any other proposal presented so far.
111 - J. Spitz 2012
Monoenergetic muon neutrinos (235.5 MeV) from positive kaon decay-at-rest are considered as a source for an electron neutrino appearance search. In combination with a liquid argon time projection chamber based detector, such a source could provide di scovery-level sensitivity to the neutrino oscillation parameter space indicative of a sterile neutrino. Current and future intense >3 GeV kinetic energy proton facilities around the world can be employed for this experimental concept.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا