ﻻ يوجد ملخص باللغة العربية
Biosensing with ferromagnet-based magnetoresistive devices has been dominated by electrical detection of particle-induced changes to the devices static magnetic configuration. There are however potential advantages to be gained from using field dependent, high frequency magnetization dynamics for magnetic particle detection. Here we demonstrate the use of nano-confined ferromagnetic resonances in periodically patterned magnetic films for the detection of adsorbed magnetic particles with diameters ranging from 6 nm to 4 $mu$m. The nanopatterned films contain arrays of holes which can act as preferential adsorption sites for small particles. Hole-localized particles act in unison to shift the resonant frequencies of the various modes of the patterned layer with shift polarities determined by the localization of each mode within the nanopatterns repeating unit cell. The same polarity shifts are observed for a large range of coverages, even when hole-localized particles are covered by quasi-continuous particle sheets. For large particles however, preferential adsorption no longer occurs, leading to resonance shifts with polarities which are independent of the mode localization. Analogous shifts are seen in continuous layers where, for small particles, the shift of the layers fundamental mode is typically about 10 times less than in patterned systems and induced by relatively weak fields emanating beyond the particle in the direction of the static applied field. This highlights the importance of having confined modes consistently positioned with respect to nearby particles.
We present a study by ferromagnetic resonance at microwave Q band of two sheets of cobalt nanoparticles obtained by annealing SiO2 layers implanted with cobalt ions. This ex- perimental study is performed as a function of the applied magnetic field o
Magnetic nanoparticles (MNPs) have excellent magnetic-temperature characteristic. However, current temperature measurement based on MNPs is interfered by concentration. Utilizing the electron spin resonance (ESR), we propose a highly sensitive temper
We address the theory of the coupled lattice and magnetization dynamics of freely suspended single-domain nanoparticles. Magnetic anisotropy generates low-frequency satellite peaks in the microwave absorption spectrum and a blueshift of the ferromagn
The inertial dynamics of magnetization in a ferromagnet is investigated theoretically. The analytically derived dynamic response upon microwave excitation shows two peaks: ferromagnetic and nutation resonances. The exact analytical expressions of fre
The dynamic magnetic susceptibility of magnetic materials near ferromagnetic resonance (FMR) is very important in interpreting dc-voltage in electrical detection of FMR. Based on the causality principle and the assumption that the usual microwave abs