ﻻ يوجد ملخص باللغة العربية
The eclipses of certain types of binary millisecond pulsars (i.e. `black widows and `redbacks) are often studied using high-time-resolution, `beamformed radio observations. However, they may also be detected in images generated from interferometric data. As part of a larger imaging project to characterize the variable and transient sky at radio frequencies <200 MHz, we have blindly detected the redback system PSR J2215+5135 as a variable source of interest with the Low-Frequency Array (LOFAR). Using observations with cadences of 2 weeks - 6 months, we find preliminary evidence that the eclipse duration is frequency dependent ($propto u^{-0.4}$), such that the pulsar is eclipsed for longer at lower frequencies, in broad agreement with beamformed studies of other similar sources. Furthermore, the detection of the eclipses in imaging data suggests an eclipsing medium that absorbs the pulsed emission, rather than scattering it. Our study is also a demonstration of the prospects of finding pulsars in wide-field imaging surveys with the current generation of low-frequency radio telescopes.
We present Low-Frequency Array (LOFAR) 143.5-MHz radio observations of flaring activity during 2019 May from the X-ray binary Cygnus X-3. Similar to radio observations of previous outbursts from Cygnus X-3, we find that this source was significantly
LOFAR offers the unique capability of observing pulsars across the 10-240 MHz frequency range with a fractional bandwidth of roughly 50%. This spectral range is well-suited for studying the frequency evolution of pulse profile morphology caused by bo
New millisecond pulsars (MSPs) in compact binaries provide a good opportunity to search for the most massive neutron stars. Their main-sequence companion stars are often strongly irradiated by the pulsar, displacing the effective center of light from
The radio and far-infrared luminosities of star-forming galaxies are tightly correlated over several orders of magnitude; this is known as the far-infrared radio correlation (FIRC). Previous studies have shown that a host of factors conspire to maint
The North American Nanohertz Observatory for Gravitational Waves (NANOGrav) project has the primary goal of detecting and characterizing low-frequency gravitational waves through high-precision pulsar timing. The mitigation of interstellar effects is